LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

LAMMPS Documentation
(22 Jun 2007 version of LAMMPS)
LAMMPS stands for Large—scale Atomic/Molecular Massively Parallel Simulator.

LAMMPS is a classical molecular dynamics simulation code designed to run efficiently on parallel
computers. It was developed at Sandia National Laboratories, a US Department of Energy facility, with
funding from the DOE. It is an open—source code, distributed freely under the terms of the GNU Public
License (GPL).

The developers of LAMMPS are Steve Plimpton, Paul Crozier, and Aidan Thompson who can be contacted
sjplimp,pscrozi,athomps at sandia.gov. The LAMMPS WWW Site at http://lammps.sandia.gov has more
information about the code and its uses.

The LAMMPS documentation is organized into the following sections. If you find errors or omissions in this
manual or have suggestions for useful information to add, please send an email to the developers so we cal
improve the LAMMPS documentation.

Once you are familiar with LAMMPS, you may want to bookmark this page at
Section_commands.html#comm since it gives quick access to documentation for all LAMMPS commands.

PDEF file of the entire manual, generated by htmldoc

1. Introduction
1.1 What is LAMMPS
1.2 L AMMPS features
1.3 LAMMPS non—features

1.4 Open source distribution
1.5 Acknowledgments and citations
2. Getting started
2.1 What's in the L AMMPS distribution
2.2 Making LAMMPS
2.3 Making LAMMPS with optional packages
2.4 Building LAMMPS as a library
2.5 Running LAMMPS
2.6_ Command-line options
2.7_Screen output
2.8 Tips for users of previous versions
3.Commands
3.1 LAMMPS input script
3.2 Parsing rules
3.3 Input script structure
3.4 Commands listed by category

3.5 Commands listed alphabetically
4. How-to discussions

LAMMPS Documentation 1

http://lammps.sandia.gov
http://www.cs.sandia.gov/~sjplimp
http://lammps.sandia.gov
http://www.easysw.com/htmldoc

4.1 Restarting a simulation
4.2 2d simulations

4.3 CHARMM and AMBER force fields
4.4 Running multiple simulations from one input script

4.5 Parallel tempering
4.6_Granular models

4.7 TIP3P water model
4.8 TIP4P water model
4.9 SPC water model

4.10 Coupling LAMMPS to other codes
4.11 Visualizing LAMMPS snapshots
4.12 Non-orthogonal simulation boxes
4.13 NEMD simulations

4.14 Aspherical particles

5. Example problems
6. Performance &scalability

7. Additional tools
8. Madifying &Extending LAMMPS
9. Errors
9.1 Common problems
9.2 Reporting bugs
9.3 Error &warning messages
10. Future and history

10.1 Coming attractions
10.2 Past versions

LAMMPS Documentation

Previous Section — LAMMPS WWW Site — LAMMPS Documentation — LAMMPS Commands — Next

Section

1. Introduction

These sections provide an overview of what LAMMPS can and can't do, describe what it means for
LAMMPS to be an open-source code, and acknowledge the funding and people who have contributed to
LAMMPS over the years.

1.1 What is LAMMPS
1.2 LAMMPS features
1.3 LAMMPS non—features

1.4 Open source distribution
1.5 Acknowledgments and citations

1.1 What is LAMMPS

LAMMPS is a classical molecular dynamics code that models an ensemble of particles in a liquid, solid, or
gaseous state. It can model atomic, polymeric, biological, metallic, granular, and coarse—grained systems
using a variety of force fields and boundary conditions.

For examples of LAMMPS simulations, see the Publications page_of the LAMMPS WWW Site.

LAMMPS runs efficiently on single—processor desktop or laptop machines, but is designed for parallel
computers. It will run on any parallel machine that compiles C++ and supparts the MPI message—passing
library. This includes distributed— or shared—memory parallel machines and Beowulf-style clusters.

LAMMPS can model systems with only a few particles up to millions or billions. See this section for
information on LAMMPS performance and scalability, or the Benchmarks section of the LAMMPS WWW
Site.

LAMMPS is a freely—available open—source code, distributed under the termgs of the GNU Public License,
which means you can use or modify the code however you wish. See this section for a brief discussion of th
open-source philosophy.

LAMMPS is designed to be easy to modify or extend with new capabilities, such as new force fields, atom
types, boundary conditions, or diagnostics._See this section for more details.

The current version of LAMMPS is written in C++. Earlier versions were written in F77 and F90. See this
section for more information on different versions. All versions can be downloaded from the LAMMPS
WWW Site.

LAMMPS was originally developed under a US Department of Energy CRADA (Cooperative Research and
Development Agreement) between two DOE labs and 3 companies. It is distributed by Sandia National Labs
See this section for more information on LAMMPS funding and individuals who have contributed to
LAMMPS.

In the most general sense, LAMMPS integrates Newton's equations of motion for collections of atoms,
molecules, or macroscopic particles that interact via short— or long-range forces with a variety of initial

1. Introduction 3

http://lammps.sandia.gov
http://lammps.sandia.gov
http://www-unix.mcs.anl.gov/mpi
http://lammps.sandia.gov
http://lammps.sandia.gov
http://www.gnu.org/copyleft/gpl.html
http://lammps.sandia.gov
http://lammps.sandia.gov
http://www.sandia.gov

and/or boundary conditions. For computational efficiency LAMMPS uses neighbor lists to keep track of
nearby particles. The lists are optimized for systems with particles that are repulsive at short distances, so tf
the local density of particles never becomes too large. On parallel machines, LAMMPS uses
spatial-decomposition technigues to partition the simulation domain into small 3d sub—domains, one of whic
is assigned to each processor. Processors communicate and store "ghost" atom information for atoms that
border their sub—domain. LAMMPS is most efficient (in a parallel sense) for systems whose particles fill a 3¢
rectangular box with roughly uniform density. Papers with technical details of the algorithms used in
LAMMPS are listed in_this section.

1.2 LAMMPS features

This section highlights LAMMPS features, with pointers to specific commands which give more details. If
LAMMPS doesn't have your favorite interatomic potential, boundary condition, or atom type. see this sectior
which describes how you can add it to LAMMPS.

Kinds of systems LAMMPS can simulate:
(atom style command)

« atomic (e.g. box of Lennard—-Jonesium)
 bead-spring polymers

 united—atom polymers or organic molecules

« all-atom polymers, organic molecules, proteins, DNA
* metals

 granular materials

 coarse—grained mesoscale models

« ellipsoidal particles

« point dipolar particles

* hybrid systems

Force fields:

(pair style, bond style, angle style, dihedral style, improper style. kspace style commands)

* pairwise potentials: Lennard—-Jones, Buckingham, Morse, Yukawa, Debye, soft, class 2 (COMPASS
tabulated

 charged pairwise potentials: Coulombic, point—-dipole

« manybody potentials: EAM, Finnis/Sinclair EAM, modified EAM (MEAM), Stillinger—Weber,
Tersoff

 coarse—grain potentials: granular, DPD, GayBerne, colloidal

* bond potentials: harmonic, FENE, Morse, nonlinear, class 2, quartic (breakable)

 angle potentials: harmonic, CHARMM, cosine, cosine/squared, class 2 (COMPASS)

« dihedral potentials: harmonic, CHARMM, multi-harmonic, helix, class 2 (COMPASS), OPLS

« improper potentials: harmonic, cvff, class 2 (COMPASS)

« hybrid potentials: multiple pair, bond, angle, dihedral, improper potentials can be used in one
simlulation

 polymer potentials: all-atom, united—atom, bead-spring, breakable

« water potentials: TIP3P, TIP4P, SPC

« long-range Coulombics: Ewald, PPPM (similar to particle-mesh Ewald)

« CHARMM, AMBER, OPLS force-field compatibility

1.2 LAMMPS features 4

Creation of atoms:

(read_data, lattice, create_atoms, delete_atoms, displace _atoms commands)

* read in atom coords from files

* create atoms on one or more lattices (e.g. grain boundaries)
« delete geometric or logical groups of atoms (e.g. voids)

« displace atoms

Ensembles, constraints, and boundary conditions:
(fix command)

 2d or 3d systems

« orthogonal or non-orthogonal (triclinic symmetry) simulation domains
 constant NVE, NVT, NPT, NPH integrators

« thermostatting options for groups and geometric regions of atoms
« pressure control via Nose/Hoover barostatting in 1 to 3 dimensions
 simulation box deformation (tensile and shear)

« harmonic (umbrella) constraint forces

« independent or coupled rigid body integration

* SHAKE bond and angle constraints

« walls of various kinds

« targeted molecular dynamics (TMD) constraints

« non—equilibrium molecular dynamics (NEMD)

« variety of additional boundary conditions and constraints

Integrators:

(run, run_style, temper commands)

« velocity—Verlet integrator

* Brownian dynamics

* energy minimization via conjugate gradient relaxation
« rRESPA hierarchical timestepping

« parallel tempering (replica exchange)

 run multiple independent simulations simultaneously

Output:

(dump, restart commands)

* log file of thermodynanmic info

« text dump files of atom coords, velocities, other per—atom quantities

* binary restart files

» per—atom energy, stress, centro—symmetry parameter

« user—defined system-wide (log file) or per—atom (dump file) calculations
e atom snapshots in native, XYZ, XTC, DCD formats

Creation of atoms:

Pre— and post—processing:

Our group has also written and released a separate toolkit called Pizza.py which provides tools for doing
setup, analysis, plotting, and visualization for LAMMPS simulations. Pizza.py is written in Python and is
available for download from the Pizza.py WWW site.

1.3 LAMMPS non—features

LAMMPS is designed to efficiently compute Newton's equations of motion for a system of interacting
particles. Many of the tools needed to pre— and post—process the data for such simulations are not included
the LAMMPS kernel for several reasons:

« the desire to keep LAMMPS simple
« they are not parallel operations

« other codes already do them

« limited development resources

Specifically, LAMMPS itself does not:

e run thru a GUI

* build molecular systems

« assign force—field coefficients automagically

« perform sophisticated analyses of your MD simulation
« visualize your MD simulation

« plot your output data

A few tools for pre— and post—processing tasks are provided as part of the LAMMPS package; they are
described in this section. However, many people use other codes or write their own tools for these tasks.

As noted above, our group has also written and released a separate toolkit called Pizza.py which addresses
some of the listed bullets. It provides tools for doing setup, analysis, plotting, and visualization for LAMMPS
simulations. Pizza.py is written_in Python and is available for download from the Pizza.py WWW site.

LAMMPS requires as input a list of initial atom coordinates and types, molecular topology information, and
force—field coefficients assigned to all atoms and bonds. LAMMPS will not build molecular systems and
assign force—field parameters for you.

For atomic systems LAMMPS provides a create_atoms command which places atoms on solid-state lattice!
(fcc, bece, user—defined, etc). Assigning small numbers of force field coefficients can be dong via the pair
coeff, bond coeff, angle coeff, etc commands. For molecular systems or more complicated simulation
geometries, users typically use another code as a builder and convert its output to LAMMPS input format, ol
write their own code to generate atom coordinate and molecular topology for LAMMPS to read in.

For complicated molecular systems (e.g. a protein), a multitude of topology information and hundreds of
force—field coefficients must typically be specified. We suggest you use a program like CHARMM or
AMBER or other molecular builders to setup such problems and dump its information to a file. You can then
reformat the file as LAMMPS input. Some of the tools in this section can assist in this process.

Similarly, LAMMPS creates output files in a simple format. Most users post—process these files with their
own analysis tools or re—format them for input into other programs, including visualization packages. If you

Pre— and post—processing: 6

http://www.cs.sandia.gov/~sjplimp/pizza.html
http://www.python.org
http://www.cs.sandia.gov/~sjplimp/pizza.html
http://www.cs.sandia.gov/~sjplimp/pizza.html
http://www.python.org
http://www.cs.sandia.gov/~sjplimp/pizza.html
http://www.scripps.edu/brooks
http://amber.scripps.edu

are convinced you need to compute something on—-the—fly as LAMMPS runs, see this section for a discussic
of how you can use the dump and compute and fix commands to print out data of your choosing. Keep in
mind that complicated computations can slow down the molecular dynamics timestepping, particularly if the
computations are not parallel, so it is often better to leave such analysis to post—processing codes.

A very simple (yet fast) visualizer is provided with the LAMMPS package — see the xmovie_tool in this
section. It creates xyz projection views of atomic coordinates and animates them. We find it very useful for
debugging purposes. For high—quality visualization we recommend the following packages:

* VMD

* AtomEye

* PyMol
» Raster3d

» RasMol
Other features that LAMMPS does not yet (and may never) support are discussed in this section.

Finally, these are freely—available molecular dynamics codes, most of them parallel, which may be
well-suited to the problems you want to model. They can also be used in conjunction with LAMMPS to
perform complementary modeling tasks.

« CHARMM
« AMBER

* NAMD

* NWCHEM
DL POLY
» Tinker

CHARMM, AMBER, NAMD, NWCHEM, and Tinker are designed primarily for modeling biological
molecules. CHARMM and AMBER use atom—decomposition (replicated—data) strategies for parallelism;
NAMD and NWCHEM use spatial-decomposition approaches, similar to LAMMPS. Tinker is a serial code.
DL _POLY includes potentials for a variety of biological and non-biological materials; both a replicated—data
and spatial-decomposition version exist.

1.4 Open source distribution

LAMMPS comes with no warranty of any kind. As each source file states in its header, it is a copyrighted
code that is distributed free—of- charge, under the terms of the GNU Public License (GPL). This is often
referred to as open—source distribution —see www.gnu.org or www.opensource.org for more details. The
legal text of the GPL is in the LICENSE file that is included in the LAMMPS distribution.

Here is a summary of what the GPL means for LAMMPS users:

(1) Anyone is free to use, modify, or extend LAMMPS in any way they choose, including for commercial
purposes.

(2) If you distribute a modified version of LAMMPS, it must remain open-source, meaning you distribute it
under the terms of the GPL. You should clearly annotate such a code as a derivative version of LAMMPS.

1.4 Open source distribution 7

http://www.ks.uiuc.edu/Research/vmd
http://164.107.79.177/Archive/Graphics/A
http://pymol.sourceforge.net
http://www.bmsc.washington.edu/raster3d/raster3d.html
http://www.openrasmol.org
http://www.scripps.edu/brooks
http://amber.scripps.edu
http://www.ks.uiuc.edu/Research/namd/
http://www.emsl.pnl.gov/docs/nwchem/nwchem.html
http://www.cse.clrc.ac.uk/msi/software/DL_POLY
http://dasher.wustl.edu/tinker
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org
http://www.opensource.org

(3) If you release any code that includes LAMMPS source code, then it must also be open—-sourced, meanin
you distribute it under the terms of the GPL.

(4) If you give LAMMPS files to someone else, the GPL LICENSE file and source file headers (including the
copyright and GPL notices) should remain part of the code.

In the spirit of an open-source code, these are various ways you can contribute to making LAMMPS better.
You can send email to the developers on any of these items.

* Point prospective users to the LAMMPS WWW Site. Mention it in talks or link to it from your
WWW site.

« If you find an error or omission in this manual or on the LAMMPS WWW Site, or have a suggestion
for something to clarify or include, send an email to_the developers.

« If you find a bug, this section describes how to report it.

« If you publish a paper using LAMMPS results, send the citation (and any cool pictures or movies if
you like) to add to the Publications, Pictures, and Movies pages_of the LAMMPS WWW Site, with
links and attributions back to you.

 Create a new Makefile.machine that can be added to the src/MAKE directory.

 The tools sub—directory of the LAMMPS distribution has various stand-alone codes for pre— and
post—processing of LAMMPS data. More details are given in this section. If you write a new tool that
users will find useful, it can be added to the LAMMPS distribution.

 LAMMPS is designed to be easy to extend with new code for features like potentials, boundary
conditions, diagnostic computations, etc. This section gives details. If you add a feature of general
interest, it can be added to the LAMMPS distribution.

» The Benchmark page of the LAMMPS WWW Site lists LAMMPS performance on various platforms.
The files needed to run the benchmarks are part of the LAMMPS distribution. If your machine is
sufficiently different from those listed, your timing data can be added to the page.

* You can send feedback for the User Comments page_of the LAMMPS WWW Site. It might be added
to the page. No promises.

« Cash. Small denominations, unmarked bills preferred. Paper sack OK. Leave on desk. VISA also
accepted. Chocolate chip cookies encouraged.

1.5 Acknowledgments and citations

LAMMPS development has been funded by the US Department of Energy (DOE), through its CRADA,
LDRD, ASCI, and Genomes-to-Life programs and its OASCR and OBER offices.

Specifically, work on the latest version was funded in part by the US Department of Energy's Genomics:GTL
program (www.doegenomestolife.org) under_the project, "Carbon Sequestration in Synechococcus Sp.: Frol
Molecular Machines to Hierarchical Modeling".

The following papers describe the parallel algorithms used in LAMMPS.

S. J. Plimpton, Fast Parallel Algorithms for Short—-Range Molecular Dynamics, J Comp Phys, 117, 1-19
(1995).

S. J. Plimpton, R. Pollock, M. Stevens, Particle-Mesh Ewald and rRESPA for Parallel Molecular

Dynamics Simulations, in Proc of the Eighth SIAM Conference on Parallel Processing for Scientific
Computing, Minneapolis, MN (March 1997).

1.5 Acknowledgments and citations 8

http://lammps.sandia.gov/authors.html
http://lammps.sandia.gov
http://lammps.sandia.gov
http://lammps.sandia.gov/authors.html
http://lammps.sandia.gov
http://lammps.sandia.gov
http://lammps.sandia.gov
http://www.doe.gov
http://www.sc.doe.gov/ascr/home.html
http://www.er.doe.gov/production/ober/ober_top.html
http://www.doegenomestolife.org
http://www.genomes2life.org

If you use LAMMPS results in your published work, please cite the J Comp Phys reference and include a
pointer to the LAMMPS WWW Site (http://lammps.sandia.gov). A paper describing the latest version of
LAMMPS is in the works; when it appears in print, you can check the LAMMPS WWW Site for a more
current citation.

If you send me information about your publication, I'll be pleased to add it to the Publications page of the
LAMMPS WWW Site. Ditto for a picture or movie for the Pictures or Movies pages.

The core group of LAMMPS developers is at Sandia National Labs. They include Steve Plimpton, Paul
Crozier, and Aidan Thompson and can be contacted via email: sjplimp, pscrozi, athomps at sandia.gov.

Here are various folks who have made significant contributions to features in LAMMPS:

Ewald and PPPM solvers: Roy Pollock (LLNL) rRESPA: Mark Stevens &Paul Crozier (Sandia) NVT/NPT
integrators: Mark Stevens (Sandia) class 2 force fields: Eric Simon (Cray) HTFN energy minimizer: Todd
Plantenga (Sandia) msi2lmp tool: Steve Lustig (Dupont), Mike Peachey &John Carpenter (Cray) CHARMM
force fields: Paul Crozier (Sandia) 2d Ewald/PPPM: Paul Crozier (Sandia) granular force fields and BC: Leo
Silbert &Gary Grest (Sandia) multi-harmonic dihedral potential: Mathias Putz (Sandia) EAM potentials:
Stephen Foiles (Sandia) parallel tempering: Mark Sears (Sandia) Imp2cfg and Imp2traj tools: Ara Kooser, Je
Greathouse, Andrey Kalinichev (Sandia) FFT support for SGI SCLS (Altix): Jim Shepherd (Ga Tech) targete
molecular dynamics (TMD): Paul Crozier (Sandia), Christian Burisch (Bochum University, Germany) force
tables for long—-range Coulombics: Paul Crozier (Sandia) radial distribution functions: Paul Crozier &Jeff
Greathouse (Sandia) Morse bond potential: Jeff Greathouse (Sandia) CHARMM LAMMPS tool: Pieter in't
Veld and Paul Crozier (Sandia) AMBER LAMMPS tool: Keir Novik (Univ College London) and Vikas
Varshney (U Akron) electric field fix: Christina Payne (Vanderbilt U) cylindrical indenter fix: Ravi Agrawal
(Northwestern U) compressed dump files: Erik Luijten (U lllinois) thermodynamics enhanced by fix
guantities: Aidan Thompson (Sandia) uniaxial strain fix: Carsten Svaneborg (Max Planck Institute) TIP4P
potential (4-site water): Ahmed Ismail and Amalie Frischknecht (Sandia) dissipative particle dynamics
(DPD) potentials: Kurt Smith (U Pitt) and Frank van Swol (Sandia) Finnis/Sinclair EAM: Tim Lau (MIT)

helix dihedral potential : Naveen Michaud—-Agrawal (Johns Hopkins U) and Mark Stevens (Sandia)
cosine/squared angle potential : Naveen Michaud-Agrawal (Johns Hopkins U) EAM CoAl and AICu
potentials : Kwang—Reoul Lee (KIST, Korea) self spring fix : Naveen Michaud-Agrawal (Johns Hopkins U)
radius—of—gyration spring fix : Naveen Michaud-Agrawal (Johns Hopkins U) and Paul Crozier (Sandia)
li/lsmooth pair potential : Craig Maloney (UCSB) grain boundary orientation fix : Koenraad Janssens and
David Olmsted (SNL) DCD and XTC dump styles: Naveen Michaud-Agrawal (Johns Hopkins U) breakable
bond quatrtic potential: Chris Lorenz and Mark Stevens (SNL) faster pair hybrid potential: James Fischer
(High Performance Technologies, Inc), Vincent Natoli and David Richie (Stone Ridge Technology) POEMS
coupled rigid body integrator: Rudranarayan Mukherjee (RPI) OPLS dihedral potential: Mark Stevens
(Sandia) multi-letter variable names : Naveen Michaud—Agrawal (Johns Hopkins U) fix momentum and
recenter : Naveen Michaud-Agrawal (Johns Hopkins U) LJ tail corrections for energy/pressure : Paul Crozie
(Sandia) region prism : Pieter in't Veld (Sandia) Stillinger—-Weber and Tersoff potentials : Aidan Thompson
(Sandia) fix wall/lj126 : Mark Stevens (Sandia) optimized pair potentials for lj/cut, charmm/long, eam, morse
: James Fischer (High Performance Tech), David Richie and Vincent Natol (Stone Ridge Technologies)
MEAM potential : Greg Wagner (Sandia) fix ave/time and fix ave/spatial : Pieter in 't Veld (Sandia)
thermo_extract tool: Vikas Varshney (Wright Patterson AFB) triclinic (non—orthogonal) simulation domains :
Pieter in 't Veld (Sandia) MATLAB post—processing scripts : Arun Subramaniyan (Purdue) neighbor multi
and communicate multi : Pieter in 't Veld (Sandia) fix heat : Paul Crozier and Ed Webb (Sandia) colloid
potentials : Pieter in 't Veld (Sandia) ellipsoidal particles : Mike Brown (Sandia) GayBerne potential : Mike
Brown (Sandia) tensile and shear box deformations

1.5 Acknowledgments and citations 9

http://lammps.sandia.gov
http://lammps.sandia.gov
http://lammps.sandia.gov
http://www.cs.sandia.gov/~sjplimp

NEMD Pieter in

SLLOD 't Veld
integration |(Sandia)
pymol aspher%/“ke

. - rown
viz tool (Sandia)

Other CRADA partners involved in the design and testing of LAMMPS were

» John Carpenter (Mayo Clinic, formerly at Cray Research)

* Terry Stouch (Lexicon Pharmaceuticals, formerly at Bristol Myers Squibb)
« Steve Lustig (Dupont)

* Jim Belak (LLNL)

1.5 Acknowledgments and citations

Previous Section — LAMMPS WWW Site — LAMMPS Documentation — LAMMPS Commands — Next

Section

2. Getting Started
This section describes how to unpack, make, and run LAMMPS, for both new and experienced users.

2.1 What's in the LAMMPS distribution

2.2 Making LAMMPS

2.3 Making LAMMPS with optional packages
2.4 Building LAMMPS as a library

2.5 Running LAMMPS

2.6 Command-line options

2.7_Screen output

2.8 Tips for users of previous versions

2.1 What's in the LAMMPS distribution

When you download LAMMPS you will need to unzip and untar the downloaded file with the following
commands, after placing the file in an appropriate directory.

gunzip lammps*.tar.gz
tar xvf lammps*.tar

This will create a LAMMPS directory containing two files and several sub—directories:

READMEf text file

the GNU
LICENSE|General Public
License (GPL)

benchmark
bench

problems
doc documentation

simple test
examples

problems

embedded aton
potentials|method (EAM)
potential files

src source files
pre- and

tools post—processin
tools

2.2 Making LAMMPS
Read this first:

Building LAMMPS can be non-trivial. You will likely need to edit a makefile, there are compiler options,
additional libraries can be used (MPI, FFT), etc. Please read this section carefully. If you are not comfortable

2. Getting Started 11

http://lammps.sandia.gov

with makefiles, or building codes on a Unix platform, or running an MPI job on your machine, please find a
local expert to help you. Many compiling, linking, and run problems that users are not really LAMMPS issue:
- they are peculiar to the user's system, compilers, libraries, etc. Such questions are better answered by a |
expert.

If you have a build problem that you are convinced is a LAMMPS issue (e.g. the compiler complains about &
line of LAMMPS source code), then please send an email to the developers.

If you succeed in building LAMMPS on a new kind of machine (which there isn't a similar Makefile for in the
distribution), send it to the developers and we'll include it in future LAMMPS releases.

Building a LAMMPS executable:

The src directory contains the C++ source and header files for LAMMPS. It also contains a top-level
Makefile and a MAKE sub—directory with low-level Makefile.* files for several machines. From within the
src directory, type "make" or "gmake". You should see a list of available choices. If one of those is the
machine and options you want, you can type a command like:

make linux
gmake mac

If you get no errors and an executable like Imp_linux or Imp_mac is produced, you're done; it's your lucky
day.

Errors that can occur when making LAMMPS:

(2) If the make command breaks immediately with errors that indicate it can't find files with a "*" in their
names, this can be because your machine's make doesn't support wildcard expansion in a makefile. Try gm
instead of make. If that doesn't work, try using a —f switch with your make command to use Makefile.list
which explicitly lists all the needed files, e.g.

make makelist
make —f Makefile.list linux
gmake —f Makefile.list mac

The first "make" command will create a current Makefile.list with all the file names in your src dir. The 2nd
"make" command (make or gmake) will use it to build LAMMPS.

(2) Other errors typically occur because the low-level Makefile isn't setup correctly for your machine. If your
platform is named "foo", you need to create a Makefile.foo in the MAKE sub-directory. Use whatever
existing file is closest to your platform as a starting point. See the next section for more instructions.

Editing a new low-level Makefile.foo:

These are the issues you need to address when editing a low-level Makefile for your machine. With a coupl
exceptions, the only portion of the file you should need to edit is the "System-specific Settings" section.

(1) Change the first line of Makefile.foo to include the word "foo" and whatever other options you set. This is
the line you will see if you just type "make".

(2) Set the paths and flags for your C++ compiler, including optimization flags. You can use g++, the
open-source GNU compiler, which is available on all Unix systems. Vendor compilers often produce faster

2. Getting Started 12

http://lammps.sandia.gov/authors.html

code. On boxes with Intel CPUs, we suggest using the free Intel icc compiler, which you can download from
Intel's compiler site.

(3) If you want LAMMPS to run in parallel, you must have an MPI library installed on your platform. If you
do not use "mpicc" as your compiler/linker, then Makefile.foo needs to specify where the mpi.h file (-I
switch) and the libmpi.a library (=L switch) is found. If you are installing MPI yourself, we recommend
Argonne's MPICH 1.2 which can be downloaded from the Argonne MPI site. LAM MPI should also work. If
you are running on a big parallel platform, your system people or the vendor should have already installed a
version of MPI, which will be faster than MPICH or LAM, so find out how to build and link with it. If you

use MPICH or LAM, you will have to configure and build it for your platform. The MPI configure script
should have compiler options to enable you to use the same compiler you are using for the LAMMPS build,
which can avoid problems that may arise when linking LAMMPS to the MPI library.

(4) If you just want LAMMPS to run on a single processor, you can use the STUBS library in place of MPI,
since you don't need an MPI library installed on your system. See the Makefile.serial file for how to specify
the —I and —L switches. You will also need to build the STUBS library for your platform before making
LAMMPS itself. From the STUBS dir, type "make" and it will hopefully create a libmpi.a suitable for linking
to LAMMPS. If the build fails, you will need to edit the STUBS/Makefile for your platform.

The file STUBS/mpi.cpp has a CPU timer function MPI_Wtime() that calls gettimeofday() . If your system
doesn't support gettimeofday() , you'll need to insert code to call another timer. Note that the ANSI-standarc
function clock() rolls over after an hour or so, and is therefore insufficient for timing long LAMMPS
simulations.

(5) If you want to use the particle—particle particle—mesh (PPPM) option in LAMMPS for long-range
Coulombics, you must have a 1d FFT library installed on your platform. This is specified by a switch of the
form —=DFFT_XXX where XXX = INTEL, DEC, SGI, SCSL, or FFTW. All but the last one are native
vendor—provided libraries. FFTW is a fast, portable library that should work on any platform. You can
download it from www.fftw.org. Use version 2.1.X, not the newer 3.0.X. Building FFTW for your box should
be as simple as ./configure; make. Whichever FFT library you have on your platform, you'll need to set the
appropriate —I and —-L switches in Makefile.foo.

If you examine fft3d.c and fft3d.h you'll see it's possible to add other vendor FFT libraries via #ifdef
statements in the appropriate places. If you successfully add a new FFT option, like —DFFT_IBM, please se
the_developers an email; we'd like to add it to LAMMPS.

(6) If you don't plan to use PPPM, you don't need an FFT library. Use a -DFFT_NONE switch in the
CCFLAGS setting of Makefile.foo, or exclude the KSPACE package (see below).

(7) There are a few other —D compiler switches you can set as part of CCFLAGS. The read_data and dump
commands will read/write gzipped files if you compile with -DGZIP. It requires that your Unix support the
"popen" command. Using one of the -DPACK_ARRAY, -DPACK_POINTER, and -DPACK_MEMCPY
options can make for faster parallel FFTs (in the PPPM solver) on some platforms. The —-DPACK_ARRAY
setting is the default.

(8) The DEPFLAGS setting is how the C++ compiler creates a dependency file for each source file. This
speeds re—compilation when source (*.cpp) or header (*.h) files are edited. Some compilers do not support
dependency file creation, or may use a different switch than —-D. GNU g++ works with —D. If your compiler
can't create dependency files (a long list of errors involving *.d files), then you'll need to create a Makefile.fo
patterned after Makefile.tflop, which uses different rules that do not involve dependency files.

2. Getting Started 13

http://www.intel.com/software/products/noncom
http://www-unix.mcs.anl.gov/mpi
http://www.fftw.org
http://lammps.sandia.gov

That's it. Once you have a correct Makefile.foo and you have pre—built the MPI and FFT libraries it will use,
all you need to do from the src directory is type one of these 2 commands:

make foo
gmake foo

You should get the executable Imp_foo when the build is complete.
Additional build tips:
(1) Building LAMMPS for multiple platforms.

You can make LAMMPS for multiple platforms from the same src directory. Each target creates its own
object sub—dir called Obj_name where it stores the system—specific *.o files.

(2) Cleaning up.
Typing "make clean" will delete all *.0 object files created when LAMMPS is built.

(3) On some machines with some compiler options, the Coulomb tabling option that is enabled by default foi
"long"_pair styles such as lj/cut/coul/long and lj/charmm/coul/long does not work. Tables are used by these
styles since it can offer a 2x speed-up. A symptom of this problem is getting wildly large energies on
timestep 0 of the examples/peptide simulation.

Here are several work—arounds. Coulomb tables can be disabled by setting "table 0" in the pair_modify
command.

The associated files (e.g. pair_lj_cut_coul_long.cpp) can be compiled at a lower optimization level like —02,
or with the compiler flag —fno—strict-aliasing. The latter can be done by adding something like these lines in
your Makefile.machine:

NOALIAS = -fno-strict-aliasing

pair_lj_cut_coul_long.o : pair_lj_cut_coul_long.cpp
$(CC) $(CCFLAGS) $(NOALIAS) —c $<

pair_lj_charmm_coul_long.o : pair_lj_charmm_coul_long.cpp
$(CC) $(CCFLAGS) $(NOALIAS) —c $<

On a Macintosh, try compiling the pair "long" files without the —fast compiler option.

(4) Building for a Macintosh.

OS X is BSD Unix, so it already works. See the Makefile.mac file.

(5) Building for MicroSoft Windows.

I've never done this, but LAMMPS is just standard C++ with MPI and FFT calls. You can use cygwin to builc
LAMMPS with a Unix make; see Makefile.cygwin. Or you should be able to pull all the source files into
Visual C++ (ugh) or some similar development environment and build it. In the src/MAKE/Windows

directory are some notes from users on how they built LAMMPS under Windows, so you can look at their
instructions for tips. Good luck — we can't help you on this one.

2. Getting Started 14

2.3 Making LAMMPS with optional packages

The source code for LAMMPS is structured as a large set of core files that are always used plus additional
packages, which are groups of files that enable a specific set of features. For example, force fields for
molecular systems or granular systems are in packages. You can see the list of packages by typing "make
package". The current list of packages is as follows:

asphere

aspherical
particles and
force fields

class2

class 2 force
fields

colloid

colloidal
particle force
fields

dipole

point dipole
particles and
force fields

dpd

dissipative
particle
dynamics
(DPD) force
field

granular

force fields
and boundary|
conditions for
granular
systems

kspace

long-range
Ewald and
particle-mesh
(PPPM)
solvers

manybody

metal,
3—-body,
bond-order
potentials

meam

modified
embedded
atom method
(MEAM)
potential

molecule

force fields for
molecular
systems

opt

2.3 Making LAMMPS with optional packages

optimized
versions of a
few pair

15

potentials
coupled rigid
body motion
dump atom
xtc snapshots in
XTC format
Any or all packages can be included or excluded when LAMMPS is built. The one exception is that to use th
"opt" package, you must also be using the "molecule" and "manybody" packages. You may wish to exclude
certain packages if you will never run certain kinds of simulations. This will keep you from having to build
auxiliary libraries (see below) and will produce a smaller executable which may run a bit faster.

poems

By default, LAMMPS includes only the "kspace”, "manybody", and "molecule" packages. As described
below, some packages require LAMMPS be linked to separately built library files, which will require editing
of your src/MAKE/Makefile.machine.

Packages are included or excluded by typing "make yes—name" or "make no—name", where "name" is the
name of the package. You can also type "make yes—all" or "make no-all" to include/exclude all optional
packages. These commands work by simply moving files back and forth between the main src directory and
sub-—directories with the package name, so that the files are seen or not seen when LAMMPS is built. After
you have included or excluded a package, you must re-make LAMMPS.

Additional make options exist to help manage LAMMPS files that exist in both the src directory and in
package sub-directories. You do not normally need to use these commands unless you are editing LAMMP
files or have downloaded a patch from the LAMMPS WWW site. Typing "make package—update" will
overwrite src files with files from the package directories if the package has been included. It should be usec
after a patch is installed, since patches only update the master package version of a file. Typing "make
package—overwrite" will overwrite files in the package directories with src files. Typing "make
package—check" will list differences between src and package versions of the same files.

To use the "meam" package you must build LAMMPS with the MEAM library in lib/meam, which computes
the modified embedded atom method potential, which is a generalization of EAM potentials that can be usec
to model a wider variety of materials. This MEAM implementation was written by Greg Wagner at Sandia.
To build LAMMPS with MEAM, you must use a low-level LAMMPS Makefile that includes the MEAM
directory in its paths. See Makefile.linux_meam as an example. You must also build MEAM itself as a librar
before building LAMMPS, so that LAMMPS can link against it. This requires a F90 compiler. The library is
built by typing "make" from within the meam directory with the appropriate Makefile, e.g. "make —f
Makefile.icc". If one of the provided Makefiles is not appropriate for your system you can edit or add one as
needed.

Note that linking a Fortran library to a C++ code can be problematic (e.g. Fortran routine names can't be
found due to non-standard underscore rules) and typically requires additional C++ or F9O0 libraries be
included in the link. You may need to read documentation for your compiler about how to do this correctly.

To use the "poems" package you must build LAMMPS with the POEMS library in lib/poems, which
computes the constrained rigid—body motion of articulated (jointed) multibody systems. POEMS was written
and is distributed by Prof Kurt Anderson's group at Rensselaer Polytechnic Institute (RPI). To build
LAMMPS with POEMS, you must use a low-level LAMMPS Makefile that includes the POEMS directory in
its paths. See Makefile.g++_poems as an example. You must also build POEMS itself as a library before
building LAMMPS, so that LAMMPS can link against it. The POEMS library is built by typing "make" from
within the poems directory with the appropriate Makefile, e.g. "make —f Makefile.g++". If one of the provided

2.3 Making LAMMPS with optional packages 16

Makefiles is not appropriate for your system you can edit or add one as needed.
2.4 Building LAMMPS as a library

LAMMPS can be built as a library, which can then be called from another application or a scripting language
See this section for more info on coupling LAMMPS to other codes. Building LAMMPS as a library is done

by typing

make makelib
make —f Makefile.lib foo

where foo is the machine name. The first "'make" command will create a current Makefile.lib with all the file
names in your src dir. The 2nd "make" command will use it to build LAMMPS as a library. This requires that
Makefile.foo have a library target (lib) and system-specific settings for ARCHIVE and ARFLAGS. See
Makefile.linux for an example. The build will create the file libimp_foo.a which another application can link
to.

When used from a C++ program, the library allows one or more LAMMPS obijects to be instantiated. All of
LAMMPS is wrapped in a LAMMPS_NS namespace; you can safely use any of its classes and methods frol
within your application code, as needed. See the sample code examples/couple/c++_driver.cpp as an exam

When used from a C or Fortran program or a scripting language, the library has a simple function—style
interface, provided in library.cpp and library.h. See the sample code examples/couple/c_driver.cpp as an
example.

You can add as many functions as you wish to library.cpp and library.h. In a general sense, those functions
can access LAMMPS data and return it to the caller or set LAMMPS data values as specified by the caller.
These 4 functions are currently included in library.cpp:

void lammps_open(int, char **, MPI_Comm, void **ptr);
void lammps_close(void *ptr);

int lammps_file(void *ptr, char *);

int lammps_command(void *ptr, char *);

The lammps_open() function is used to initialize LAMMPS, passing in a list of strings as if they were
command-line arguments when LAMMPS is run from the command line and a MPI communicator for
LAMMPS to run under. It returns a ptr to the LAMMPS object that is created, and which should be used in
subsequent library calls. Note that lammps_open() can be called multiple times to create multiple LAMMPS
objects.

The lammps_close() function is used to shut down LAMMPS and free all its memory. The lammps_file() and
lammps_command() functions are used to pass a file or string to LAMMPS as if it were an input file or single
command read from an input script.

2.5 Running LAMMPS

By default, LAMMPS runs by reading commands from stdin; e.g. Imp_linux < in.file. This means you first
create an input script (e.qg. in.file) containing the desired commands. This section describes how input script:
are structured and what commands they contain.

You can test LAMMPS on any of the sample inputs provided in the examples directory. Input scripts are
named in.* and sample outputs are named log.*.name.P where name is a machine and P is the number of

2.4 Building LAMMPS as a library 17

processors it was run on.

Here is how you might run one of the Lennard—-Jones tests on a Linux box, using mpirun to launch a paralle
job:

cd src

make linux

cp Imp_linux ../examples/lj

cd ../examples/lj

mpirun —np 4 Imp_linux <in.lj.nve

The screen output from LAMMPS is described in the next section. As it runs, LAMMPS also writes a
log.lammps file with the same information.

Note that this sequence of commands copies the LAMMPS executable (Imp_linux) to the directory with the
input files. This may not be necessary, but some versions of MPI reset the working directory to where the
executable is, rather than leave it as the directory where you launch mpirun from (if you launch Imp_linux on
its own and not under mpirun). If that happens, LAMMPS will look for additional input files and write its
output files to the executable directory, rather than your working directory, which is probably not what you
want.

If LAMMPS encounters errors in the input script or while running a simulation it will print an ERROR
message and stop or a WARNING message and continye. See this section for a discussion of the various
kinds of errors LAMMPS can or can't detect, a list of all ERROR and WARNING messages, and what to do
about them.

LAMMPS can run a problem on any number of processors, including a single processor. In theory you shou
get identical answers on any number of processors and on any machine. In practice, numerical round—off ce
cause slight differences and eventual divergence of molecular dynamics phase space trajectories.

LAMMPS can run as large a problem as will fit in the physical memory of one or more processors. If you run
out of memory, you must run on more processors or setup a smaller problem.

2.6 Command-line options

At run time, LAMMPS recognizes several optional command-line switches which may be used in any order.
For example, Imp_ibm might be launched as follows:

mpirun —np 16 Imp_ibm -var f tmp.out —log my.log —screen none <in.alloy
These are the command-line options:
—echo style

Set the style of command echoing. The style can be none or screen or log or both. Depending on the style,
each command read from the input script will be echoed to the screen and/or logfile. This can be useful to
figure out which line of your script is causing an input error. The default value is log. The echo style can alsc
be set by using the echo command in the input script itself.

—partition 8x2 45 ...

2.6 Command-line options 18

Invoke LAMMPS in multi—partition mode. When LAMMPS is run on P processors and this switch is not
used, LAMMPS runs in one partition, i.e. all P processors run a single simulation. If this switch is used, the F
processors are split into separate partitions and each patrtition runs its own simulation. The arguments to the
switch specify the number of processors in each partition. Arguments of the form MxN mean M partitions,
each with N processors. Arguments of the form N mean a single partition with N processors. The sum of
processors in all partitions must equal P. Thus the command "—partition 8x2 4 5" has 10 partitions and runs
a total of 25 processors.

The input script specifies what simulation is run on which partition; see the variable and next commands. Th
howto section gives examples of how to use these commands in this way. Simulations running on different
partitions can also communicate with each other; see the temper command.

—in file

Specify a file to use as an input script. This is an optional switch when running LAMMPS in one—partition
mode. If it is not specified, LAMMPS reads its input script from stdin — e.g. Imp_linux < in.run. This is a
required switch when running LAMMPS in multi-partition mode, since multiple processors cannot all read
from stdin.

-log file

Specify a log file for LAMMPS to write status information to. In one—partition mode, if the switch is not
used, LAMMPS writes to the file log.lammps. If this switch is used, LAMMPS writes to the specified file. In
multi—partition mode, if the switch is not used, a log.lammps file is created with hi-level status information.
Each partition also writes to a log.lammps.N file where N is the partition ID. If the switch is specified in
multi-partition mode, the hi-level logfile is named "file" and each patrtition also logs information to a file.N.
For both one—partition and multi—partition mode, if the specified file is "none", then no log files are created.
Using a log command in the input script will override this setting.

—screen file

Specify a file for LAMMPS to write its screen information to. In one—partition mode, if the switch is not used,
LAMMPS writes to the screen. If this switch is used, LAMMPS writes to the specified file instead and you
will see no screen output. In multi-partition mode, if the switch is not used, hi-level status information is
written to the screen. Each partition also writes to a screen.N file where N is the partition ID. If the switch is
specified in multi—partition mode, the hi-level screen dump is hamed "file" and each partition also writes
screen information to a file.N. For both one—partition and multi—partition mode, if the specified file is "none",
then no screen output is performed.

—var name value

Specify a variable that will be defined for substitution purposes when the input script is read. "Name" is the
variable name which can be a single character (referenced as $x in the input script) or a full string (referenc:
as ${abc}). The value can be any string. Using this command-line option is equivalent to putting the line
"variable name index value" at the beginning of the input script. Defining a variable as a command-line
argument overrides any setting for the same variable in the input script, since variables cannot be re—-define
See the variable command for more info on defining variables and this section for more info on using
variables in input scripts.

2.6 Command-line options 19

2.7 LAMMPS screen output

As LAMMPS reads an input script, it prints information to both the screen and a log file about significant
actions it takes to setup a simulation. When the simulation is ready to begin, LAMMPS performs various
initializations and prints the amount of memory (in MBytes per processor) that the simulation requires. It alsc
prints details of the initial thermodynamic state of the system. During the run itself, thermodynamic
information is printed periodically, every few timesteps. When the run concludes, LAMMPS prints the final
thermodynamic state and a total run time for the simulation. It then appends statistics about the CPU time al
storage requirements for the simulation. An example set of statistics is shown here:

Loop time of 49.002 on 2 procs for 2004 atoms

Pair time (%) = 35.0495 (71.5267)
Bond time (%) = 0.092046 (0.187841)
Kspce time (%) = 6.42073 (13.103)
Neigh time (%) = 2.73485 (5.5811)
Comm time (%) = 1.50291 (3.06703)
Outpt time (%) = 0.013799 (0.0281601)
Other time (%) = 2.13669 (4.36041)

Nlocal: 1002 ave, 1015 max, 989 min
Histogram: 1000000001

Nghost: 8720 ave, 8724 max, 8716 min
Histogram: 1000000001

Neighs: 354141 ave, 361422 max, 346860 min
Histogram: 1000000001

Total # of neighbors = 708282

Ave neighs/atom = 353.434

Ave special neighs/atom = 2.34032
Number of reneighborings = 42
Dangerous reneighborings = 2

The first section gives the breakdown of the CPU run time (in seconds) into major categories. The second
section lists the number of owned atoms (Nlocal), ghost atoms (Nghost), and pair-wise neighbors stored pe
processor. The max and min values give the spread of these values across processors with a 10—bin histog
showing the distribution. The total number of histogram counts is equal to the number of processors.

The last section gives aggregate statistics for pair-wise neighbors and special neighbors that LAMMPS kee
track of (see the special_bonds command). The number of times neighbor lists were rebuilt during the run is
given as well as the number of potentially "dangerous" rebuilds. If atom movement triggered neighbor list
rebuilding (see the neigh_modify command), then dangerous reneighborings are those that were triggered ¢
the first timestep atom movement was checked for. If this count is non—zero you may wish to reduce the del
factor to insure no force interactions are missed by atoms moving beyond the neighbor skin distance before
rebuild takes place.

If an energy minimization was performed via_the minimize command, additional information is printed, e.g.

Minimization stats:
E initial, next—to—last, final = —0.895962 —2.94193 —-2.94342
Gradient 2—norm init/final= 1920.78 20.9992
Gradient inf-norm init/final= 304.283 9.61216
Iterations = 36
Force evaluations = 177

2.7 LAMMPS screen output 20

The first line lists the initial and final energy, as well as the energy on the next-to-last iteration. The next 2
lines give a measure of the gradient of the energy (force on all atoms). The 2—norm is the "length” of this
force vector; the inf-norm is the largest component. The last 2 lines are statistics on how many iterations an
force—evaluations the minimizer required. Multiple force evaluations are typically done at each iteration to
perform a 1d line minimization in the search direction.

If a_kspace_style long-range Coulombics solve was performed during the run (PPPM, Ewald), then addition
information is printed, e.g.

FFT time (% of Kspce) = 0.200313 (8.34477)
FFT Gflps 3d 1d-only = 2.31074 9.19989

The first line gives the time spent doing 3d FFTs (4 per timestep) and the fraction it represents of the total
KSpace time (listed above). Each 3d FFT requires computation (3 sets of 1d FFTs) and communication
(transposes). The total flops performed is 5Nlog_2(N), where N is the number of points in the 3d grid. The
FFTs are timed with and without the communication and a Gflop rate is computed. The 3d rate is with
communication; the 1d rate is without (just the 1d FFTs). Thus you can estimate what fraction of your FFT
time was spent in communication, roughly 75% in the example above.

2.8 Tips for users of previous LAMMPS versions

LAMMPS 2003 is a complete C++ rewrite of LAMMPS 2001, which was written in F90. Features of earlier
versions of LAMMPS are listed in this section. The F90 and F77 versions (2001 and 99) are also freely
distributed as open-source codes; check the LAMMPS WWW Site for distribution information if you prefer
those versions. The 99 and 2001 versions are no longer under active development; they do not have all the
features of LAMMPS 2003.

If you are a previous user of LAMMPS 2001, these are the most significant changes you will notice in
LAMMPS 2003:

(1) The names and arguments of many input script commands have changed. All commands are now a sing
word (e.g. read_data instead of read data).

(2) All the functionality of LAMMPS 2001 is included in LAMMPS 2003, but you may need to specify the
relevant commands in different ways.

(3) The format of the data file can be streamlined for some problems. See the read data command for detai
The data file section "Nonbond Coeff" has been renamed to "Pair Coeff" in LAMMPS 2003.

(4) Binary restart files written by LAMMPS 2001 cannot be read by LAMMPS 2003 with a read_restart
command. This is because they were output by F90 which writes in a different binary format than C or C++
writes or reads. Use the restart2data tool provided with LAMMPS 2001 to convert the 2001 restart file to a
text data file. Then edit the data file as necessary before using the LAMMPS 2003 read data command to r
itin.

(5) There are numerous small numerical changes in LAMMPS 2003 that mean you will not get identical

answers when comparing to a 2001 run. However, your initial thermodynamic energy and MD trajectory
should be close if you have setup the problem for both codes the same.

2.8 Tips for users of previous LAMMPS versions 21

http://lammps.sandia.gov

Previous Section — LAMMPS WWW Site — LAMMPS Documentation — LAMMPS Commands — Next

Section

3. Commands

This section describes how a LAMMPS input script is formatted and what commands are used to define a
LAMMPS simulation.

3.1 LAMMPS input script

3.2 Parsing rules

3.3 Input script structure

3.4 Commands listed by category
3.5 Commands listed alphabetically

3.1 LAMMPS input script

LAMMPS executes by reading commands from a input script (text file), one line at a time. When the input
script ends, LAMMPS exits. Each command causes LAMMPS to take some action. It may set an internal
variable, read in a file, or run a simulation. Most commands have default settings, which means you only ne
to use the command if you wish to change the default.

In many cases, the ordering of commands in an input script is not important. However the following rules
apply:

(1) LAMMPS does not read your entire input script and then perform a simulation with all the settings.
Rather, the input script is read one line at a time and each command takes effect when it is read. Thus this
sequence of commands:

timestep 0.5
run 100
run 100

does something different than this sequence:

run 100
timestep 0.5
run 100

In the first case, the specified timestep (0.5 fmsec) is used for two simulations of 100 timesteps each. In the
2nd case, the default timestep (1.0 fmsec) is used for the 1st 100 step simulation and a 0.5 fmsec timestep |
used for the 2nd one.

(2) Some commands are only valid when they follow other commands. For example you cannot set the
temperature of a group of atoms until atoms have been defined and a group command is used to define whi
atoms belong to the group.

(3) Sometimes command B will use values that can be set by command A. This means command A must

precede command B in the input script if it is to have the desired effect. For example. the read_data comma
initializes the system by setting up the simulation box and assigning atoms to processors. If default values a
not desired, the processors and boundary commands need to be used before read_data to tell LAMMPS ho

3. Commands 22

http://lammps.sandia.gov

to map processors to the simulation box.

Many input script errors are detected by LAMMPS and an ERROR or WARNING message is_printed. This
section gives more information on what errors mean. The documentation for each command lists restriction:s
on how the command can be used.

3.2 Parsing rules

Each non-blank line in the input script is treated as a command. LAMMPS commands are case sensitive.
Command names are lower—case, as are specified command arguments. Upper case letters may be used il
names or user—chosen ID strings.

Here is how each line in the input script is parsed by LAMMPS:

(1) If the line ends with a ""character (with no trailing whitespace), the command is assumed to continue on
the next line. The next line is concatenated to the previous line by removing the "character and newline. Th
allows long commands to be continued across two or more lines.

(2) All characters from the first "#" character onward are treated as comment and discarded.

(3) The line is searched repeatedly for $ characters which indicate variables that are replaced with a text
string. If the $ is followed by curly brackets, then the variable name is the text inside the curly brackets. If no
curly brackets follow the $, then the variable name is the character immediately following the $. Thus
${myTemp} and $x refer to variable names "myTemp" and "x". See the variable command for details of how
strings are assigned to variables and how they are substituted for in input scripts.

(4) The line is broken into "words" separated by whitespace (tabs, spaces). Note that words can thus contail
letters, digits, underscores, or punctuation characters.

(5) The first word is the command name. All successive words in the line are arguments.
(6) Text with spaces can be enclosed in double quotes so it will be treated as a single argument. See the du

modify or_fix print commands for examples. A '#' or '$' character that in text between double quotes will not
be treated as a comment or substituted for as a variable.

3.3 Input script structure

This section describes the structure of a typical LAMMPS input script. The "examples" directory in the
LAMMPS distribution contains many sample input scripts; the corresponding problems are discussed in this
section, and animated on the LAMMPS WWW Site.

A LAMMPS input script typically has 4 parts:
1. Initialization
2. Atom definition
3. Settings
4. Run a simulation

The last 2 parts can be repeated as many times as desired. I.e. run a simulation, change some settings, run

3.2 Parsing rules 23

http://lammps.sandia.gov

some more, etc. Each of the 4 parts is now described in more detail. Remember that almost all the comman
need only be used if a non—default value is desired.

(2) Initialization
Set parameters that need to be defined before atoms are created or read—in from a file.

The relevant commands are units, dimension, hewton, processors, boundary, atom_style, atom_modify.

If force—field parameters appear in the files that will be read, these commands tell LAMMPS what kinds of
force fields are being used: pair_style, bond_style, angle _style, dihedral_style, improper_style.

(2) Atom definition

There are 3 ways to define atoms in LAMMPS. Read them in from a data or restart file via the read_data or
read_restart commands. These files can contain molecular topology information. Or create atoms on a lattic
(with no molecular topology), using these commands: lattice, region, create_box, create atoms. The entire ¢
of atoms can be duplicated to make a larger simulation using the replicate command.

(3) Settings

Once atoms and molecular topology are defined, a variety of settings can be specified: force field coefficient
simulation parameters, output options, etc.

Force field coefficients are set by these commands (they can also be set in the read=in files): pair_coeff,
bond_coeff, angle_coeff, dihedral_coeff, improper_coeff. kspace _style, dielectric. special bonds.

Various simulation parameters are set by these commands: neighbor, neigh _modify, group, timestep,
reset_timestep. run_style, min_style, min_modify.

Fixes impose a variety of boundary conditions, time integration, and diagnostic options. The fix command
comes in many flavors.

Various computations can be specified for execution during a simulation using the compute, compute modif
and_variable commands.

Output options are set by the thermo, dump, and restart commands.

(4) Run a simulation

A molecular dynamics simulation is run using_the run command. Energy minimization (molecular statics) is
performed using the minimize command. A parallel tempering (replica—exchange) simulation can be run
using the temper command.

3.4 Commands listed by category

This section lists all LAMMPS commands, grouped by category. The next section lists the same commands
alphabetically. Note that some style options for some commands are part of specific LAMMPS packages,
which means they cannot be used unless the package was included when LAMMPS was built. Not all
packages are included in a default LAMMPS build. These dependencies are listed as Restrictions in the

3.4 Commands listed by category 24

command's documentation.

Initialization:

atom_modify, atom_style, boundary, dimension, newton, processors, units

Atom definition:

create_atoms, create_box, lattice, read_data, read_restart, region, replicate

Force fields:

angle_coeff, angle_style, bond_coeff, bond_style, dielectric, dihedral _coeff, dihedral_style, improper_coeff,
improper_style, kspace_modify, kspace_style, pair_coeff, pair_modify, pair_style, pair_write, special _bonds

Settings:

communicate, dipole, group. mass, min_modify, min_style, neigh_modify, neighbor, reset_timestep,
run_style, set, shape, timestep, velocity

Fixes:

fix, fix_modify, unfix

Computes:

compute, compute_modify, uncompute

Output:

dump, dump_modify, restart, thermo, thermo_modify, thermo_ style, undump, write_restart

Actions:

delete_atoms, delete_bonds. displace_atoms, minimize, run, temper

Miscellaneous:

clear, echq, if, include, jump, label. log, next, print, shell, variable

3.5 Individual commands

This section lists all LAMMPS commands alphabetically, with a separate listing below of styles within certair
commands. The previous section lists the same commands, grouped by category. Note that some style opti
for some commands are part of specific LAMMPS packages, which means they cannot be used unless the
package was included when LAMMPS was built. Not all packages are included in a default LAMMPS build.
These dependencies are listed as Restrictions in the command's documentation.

angle_coeff angle_style | atom_modify| atom_style| bond_coeff bond_style
boundary clear communicatel compute [compute_modify create_atoms

3.5 Individual commands 25

create_box| delete_atoms delete_bondg dielectric | dihedral_coeff| dihedral_style
dimension dipole displace_aton]js dump dump_modify echo
fix fix_modify rou if improper_coefflimproper_style
include jump kspace_modiflikspace_style label lattice
log mass minimize |[min_modify] min_style | neigh_modify
neighbor newton next pair_coeff| pair_modify pair_style
pair_write print processors | read_data| read_restart region
replicate |reset_timestgp restart run run_style set
shape shell special_bonds temper thermo thermo_modi
thermo_styl¢ timestep uncompute | undump unfix units
variable velocity write_restart

Fix commands. See the fix command for one-line descriptions of each style or click on the style itself for a
full description:

addforce | aveforce ave/sgatiaj aveltime com deform | deposit | drag
efield |enforce2d freeze | gran/diag| gravity gyration heat indent
langevin | lineforce| msd |momentun nph npt npt/asphere nve
nve/asphenave/dipolg nve/gran |nve/noforce nvt nvt/asphere nvt/sllod [orient/fcd
planeforce| poems pour print rdf recenter rigid setforce

shake spring | spring/rg | spring/selfitemp/rescale tmd viscous |wall/gran
wall/lj126 | wall/lj93 |wall/reflec wiggle

Compute commands. See the compute command for one-line descriptions of each style or click on the style
itself for a full description:

centro/atomcoord/atonjepair/atom etotal/aton] ke/atom pressure
rotate/dipol@rotate/graristress/atom temp [temp/deformtemp/aspher
temp/dipoldtemp/partialtemp/ramptemp/region variable |variable/atom

(4]

Pair_style potentials. See the pair_style command for an overview of pair potentials. Click on the style itself
for a full description:

none hybrid airebo buck
buck/coul/cut buck/coul/long colloid dipole/cut
dpd eam eam/opt eam/alloy
eam/alloy/opt eam/fs eam/fs/opt gayberne
aran/hertzian gran/history aran/no_history |lj/charmm/coul/charmin
lj/charmm/coul/charmm/implicjli/charmm/coul/londj/charmm/coul/long/ogt lj/class2
lj/class2/coul/cut lj/class2/coul/long lj/cut lj/cut/opt
lj/cut/coul/cut lj/cut/coul/debye lj/cut/coul/long lj/cut/coul/long/tip4p
lj/expand lj/smooth meam morse
morse/opt soft sSw table
26

3.5 Individual commands

tersoff yukawa

Bond_style potentials. See the bond_style command for an overview of bond potentials. Click on the style
itself for a full description:

none hybrid [class2 fene
fene/expanfharmoni¢gmorsanonlinea

guartic

Angle_style potentials. See the angle_style command for an overview of angle potentials. Click on the style
itself for a full description:

none hybrid charmm‘classi
cosingcosine/squargdarmoniq

Dihedral_style potentials. See the dihedral_style command for an overview of dihedral potentials. Click on t
style itself for a full description:

none |hybrid charmm |class?
harmonig helix |multi’/harmonig¢ opls

Improper_style potentials. See the improper_style command for an overview of improper potentials. Click or
the style itself for a full description:

none ‘hybridlclassim|
harmonid

Kspace solvers. See the kspace_style command for an overview of Kspace solvers. Click on the style itself
a full description:

lewaldpppripppm/tip4g

3.5 Individual commands 27

Previous Section — LAMMPS WWW Site — LAMMPS Documentation — LAMMPS Commands — Next

Section

4. How-to discussions

The following sections describe what commands can be used to perform certain kinds of LAMMPS
simulations.

4.1 Restarting a simulation
4.2 2d simulations

4.3 CHARMM and AMBER force fields

4.4 Running multiple simulations from one input script

4.5 Parallel tempering
4.6 Granular models

4.7 TIP3P water model

4.8 TIP4P water model

4.9 SPC water model

4.1Q Coupling LAMMPS to other codes
4.11 Visualizing LAMMPS snhapshots

4.12 Non-orthogonal simulation boxes
4.13 NEMD simulations

4.14 Aspherical particles

The example input scripts included in the LAMMPS distribution and highlighted in this section also show
how to setup and run various kinds of problems.

4.1 Restarting a simulation

There are 3 ways to continue a long LAMMPS simulation. Multiple run commands can be used in the same
input script. Each run will continue from where the previous run left off. Or binary restart files can be saved t
disk using the restart command. At a later time, these binary files can be read via a read_restart command i
new script. Or they can be converted to text data files and read by a read_data command in a new script. Tt
section discusses the restart2data tool that is used to perform the conversion.

Here we give examples of 2 scripts that read either a binary restart file or a converted data file and then isst
new run command to continue where the previous run left off. They illustrate what settings must be made in
the new script. Details are discussed in the documentation for the read restart and read_data commands.

Look at the in.chain input script provided in the bench directory of the LAMMPS distribution to see the
original script that these 2 scripts are based on. If that script had the line

restart 50 tmp.restart
added to it, it would produce 2 binary restart files (tmp.restart.50 and tmp.restart.100) as it ran.

This script could be used to read the 1st restart file and re—run the last 50 timesteps:
read_restart tmp.restart.50

neighbor 0.4 bin

4. How-to discussions 28

http://lammps.sandia.gov

neigh_modify every 1 delay 1

fix 1 all nve
fix 2 all langevin 1.0 1.0 10.0 904297

timestep 0.012

run 50

Note that the following commands do not need to be repeated because their settings are included in the res
file: units, atom_style, special_bonds, pair_style, bond_style. However these commands do need to be usec
since their settings are not in the restart file: neighbor, fix, timestep.

If you actually use this script to perform a restarted run, you will notice that the thermodynamic data match &
step 50 (if you also put a "thermo 50" command in the original script), but do not match at step 100. This is
because the fix langevin command uses random numbers in a way that does not allow for perfect restarts.

As an alternate approach, the restart file could be converted to a data file using this tool:

restart2data tmp.restart.50 tmp.restart.data

Then, this script could be used to re—run the last 50 steps:

units lj

atom_style bond
pair_style lj/cut 1.12
pair_modify shift yes
bond_style fene
special_bonds 0.01.01.0

read_data tmp.restart.data

neighbor 0.4 bin
neigh_modify every 1 delay 1

fix 1 all nve
fix 2 all langevin 1.0 1.0 10.0 904297

timestep 0.012

reset_timestep 50
run 50

Note that nearly all the settings specified in the original in.chain script must be repeated, except the pair_co
and bond_coeff commands since the new data file lists the force field coefficients. Also, the reset timestep
command is used to tell LAMMPS the current timestep. This value is stored in restart files, but not in data
files.

4.2 2d simulations
Use the dimension command to specify a 2d simulation.

Make the simulation box periodic in z via the boundary command. This is the default.

4.2 2d simulations 29

If using the_create box command to define a simulation box, set the z dimensions narrow, but finite, so that t
create_atoms command will tile the 3d simulation box with a single z plane of atoms - e.g.

create box 1 =10 10 -10 10 -0.25 0.25

If using the read data command to read in a file of atom coordinates, set the "zlo zhi" values to be finite but
narrow, similar to the create_box command settings just described. For each atom in the file, assign a z
coordinate so it falls inside the z-boundaries of the box - e.g. 0.0.

Use the fix enforce2d command as the last defined fix to insure that the z—components of velocities and forc
are zeroed out every timestep. The reason to make it the last fix is so that any forces induced by other fixes
will be zeroed out.

Many of the example input scripts included in the LAMMPS distribution are for 2d models.

4.3 CHARMM and AMBER force fields

There are many different ways to compute forces in the CHARMM and AMBER molecular dynamics codes,
only some of which are available as options in LAMMPS. A force field has 2 parts: the formulas that define i
and the coefficients used for a particular system. Here we only discuss formulas implemented in LAMMPS.
Setting coefficients is done in the input data file via_ the read data command or in the input script with
commands like pair_coeff or bond_coeff. See this section for additional tools that can use CHARMM or
AMBER to assign force field coefficients and convert their output into LAMMPS input.

See (MacKerell) for a description of the CHARMM force field. See (Cornell) for a description of the AMBER
force field.

These style choices compute force field formulas that are consistent with common options in CHARMM or
AMBER. See each command's documentation for the formula it computes.

* bond_style harmonic

« angle_style charmm

« dihedral_style charmm
« pair_style lj/charmm/coul/charmm

« pair_style lj/charmm/coul/charmm/implicit
« pair_style lj/charmm/coul/long

« special_bonds charmm
« special_bonds amber

4.4 Running multiple simulations from one input script

This can be done in several ways. See the documentation for individual commands for more details on how
these examples work.

If "'multiple simulations" means continue a previous simulation for more timesteps, then you simply use the
run command multiple times. For example, this script

units j

4.3 CHARMM and AMBER force fields 30

http://www.scripps.edu/brooks
http://amber.scripps.edu

atom_style atomic
read_data data.lj
run 10000

run 10000

run 10000

run 10000

run 10000

would run 5 successive simulations of the same system for a total of 50,000 timesteps.

If you wish to run totally different simulations, one after the other, the clear command can be used in betwee
them to re-initialize LAMMPS. For example, this script

units |j

atom_style atomic
read_data data.lj

run 10000

clear

units |j

atom_style atomic
read_data data.lj.new
run 10000

would run 2 independent simulations, one after the other.
For large numbers of independent simulations, you can use variables_ and the next and jump commands to

loop over the same input script multiple times with different settings. For example, this script, named
in.polymer

variable d index runl run2 run3 run4 run5 run6 run7 run8
cd $d

read_data data.polymer

run 10000

cd..

clear

next d

jump in.polymer

would run 8 simulations in different directories, using a data.polymer file in each directory. The same concej
could be used to run the same system at 8 different temperatures, using a temperature variable and storing
output in different log and dump files, for example

variable a loop 8

variable tindex 0.8 0.850.90.951.01.051.1 1.15
log log.$a

read data.polymer

velocity all create $t 352839

fix 1 all nvt $t $t 100.0

dump 1 all atom 1000 dump.$a
run 100000

next t

next a

jump in.polymer

All of the above examples work whether you are running on 1 or multiple processors, but assumed you are

running LAMMPS on a single partition of processors. LAMMPS can be run on multiple partitions via the
"—partition" command-line switch as described in this section of the manual.

4.3 CHARMM and AMBER force fields 31

In the last 2 examples, if LAMMPS were run on 3 partitions, the same scripts could be used if the "index" an
"loop" variables were replaced with universe—style variables, as described in the variable command. Also, tt
"next t" and "next a" commands would need to be replaced with a single "next a t" command. With these
modifications, the 8 simulations of each script would run on the 3 partitions one after the other until all were
finished. Initially, 3 simulations would be started simultaneously, one on each partition. When one finished,
that partition would then start the 4th simulation, and so forth, until all 8 were completed.

4.5 Parallel tempering

The_temper command can be used to perform a parallel tempering or replica—exchange simulation where
multiple copies of a simulation are run at different temperatures on different sets of processors, and Monte
Carlo temperature swaps are performed between pairs of copies.

Use the —procs and —in command-line switches to launch LAMMPS on multiple partitions.

In your input script, define a set of temperatures, one for each processor partition, using the variable
command:

variable t proc 300.0 310.0 320.0 330.0
Define a fix of style nvt Qr langevin to control the temperature of each simulation:
fix myfix all nvt $t $t 100.0

Use the temper command in place of a run command to perform a simulation where tempering exchanges v
take place:

temper 100000 100 $t myfix 3847 58382

4.6 Granular models

To run a simulation of a granular model, you will want to use the following commands:

 atom_style granular
« fix nve/gran

« fix gravity

* thermo_style gran

Use one of these 3 pair potentials:

* pair_style gran/history
* pair_style gran/no_history

* pair_style gran/hertzian
These commands implement fix options specific to granular systems:

« fix freeze

« fix gran/diag
« fix pour

4.5 Parallel tempering 32

« fix viscous
« fix wall/gran

The fix style freeze zeroes both the force and torque of frozen atoms, and should be used for granular syste
instead of the fix style setforce.

For computational efficiency, you can eliminate needless pairwise computations between frozen atoms by
using this command:

* neigh_modify exclude

4.7 TIP3P water model

The TIP3P water model as implemented in CHARMM (MacKerell) specifies a 3-site rigid water molecule
with charges and Lennard-Jones parameters assigned to each of the 3 atoms. In LAMMPS the fix shake
command can be used to hold the two O—H bonds and the H-O-H angle rigid. A bond style of harmonic an
an angle style of harmonic or charmm should also be used.

These are the additional parameters (in real units) to set for O and H atoms and the water molecule to run a
rigid TIP3P-CHARMM model with a cutoff. The K values can be used if a flexible TIP3P model (without fix
shake) is desired. If the LJ epsilon and sigma for HH and OH are set to 0.0, it corresponds to the original 19

TIP3P model (Jorgensen).

O mass = 15.9994
H mass = 1.008

O charge = -0.834
H charge = 0.417

LJ epsilon of OO = 0.1521
LJ sigma of OO = 3.188
LJ epsilon of HH = 0.0460
LJ sigma of HH = 0.4000
LJ epsilon of OH = 0.0836
LJ sigma of OH = 1.7753

K of OH bond = 450
rO of OH bond = 0.9572

K of HOH angle = 55
theta of HOH angle = 104.52

These are the parameters to use for TIP3P with a long-range Coulombic solver (Ewald or PPPM in
LAMMPS):

O mass = 15.9994
H mass = 1.008

O charge = -0.830
H charge = 0.415

4.7 TIP3P water model 33

LJ epsilon of OO =0.102
LJ sigma of OO = 3.1507
LJ epsilon, sigma of OH, HH = 0.0

K of OH bond = 450
rO of OH bond = 0.9572

K of HOH angle = 55
theta of HOH angle = 104.52

4.8 TIP4P water model

The four—point TIP4P rigid water model extends the traditional three—point TIP3P model by adding an
additional site, usually massless, where the charge associated with the oxygen atom is placed. This site M i
located at a fixed distance away from the oxygen along the bisector of the HOH bond angle. A bond style of
harmonic and an angle style of harmonic or charmm should also be used.

Currently, only a four—point model for long-range Coulombics is implemented via the LAMMPS pair style
lj/cut/coul/long/tipdp. We plan to add a cutoff version in the future. For both models, the bond lengths and
bond angles should be held fixed using the fix shake command.

These are the additional parameters (in real units) to set for O and H atoms and the water molecule to run a
rigid TIP4P model with a cutoff (Jorgensen). Note that the OM distance is specified in the pair_style
command, not as part of the pair coefficients.

O mass = 15.9994
H mass = 1.008

O charge = -1.040
H charge = 0.520

ro of OH bond = 0.9572
theta of HOH angle = 104.52

OM distance = 0.15

LJ epsilon of O-0O = 0.1550

LJ sigma of O-O = 3.1536

LJ epsilon, sigma of OH, HH = 0.0

These are the parameters to use for TIP4P with a long-range Coulombic solver (Ewald or PPPM in
LAMMPS):

O mass = 15.9994
H mass = 1.008

O charge = -1.0484
H charge = 0.5242

4.8 TIPAP water model 34

rO of OH bond = 0.9572
theta of HOH angle = 104.52

OM distance = 0.1250
LJ epsilon of O-0 = 0.16275

LJ sigma of O-0O = 3.16435
LJ epsilon, sigma of OH, HH = 0.0

4.9 SPC water model

The SPC water model specifies a 3—site rigid water molecule with charges and Lennard-Jones parameters
assigned to each of the 3 atoms. In LAMMPS the fix shake command can be used to hold the two O—-H bon
and the H-O-H angle rigid. A bond style of harmonic and an angle style of harmonic or charmm should alsc
be used.

These are the additional parameters (in real units) to set for O and H atoms and the water molecule to run a
rigid SPC model with long—-range Coulombics (Ewald or PPPM in LAMMPS).

O mass = 15.9994
H mass = 1.008

O charge = -0.820
H charge = 0.410

LJ epsilon of OO = 0.1553
LJ sigma of OO = 3.166
LJ epsilon, sigma of OH, HH = 0.0

ro of OH bond = 1.0
theta of HOH angle = 109.47

4.10 Coupling LAMMPS to other codes

LAMMPS is designed to allow it to be coupled to other codes. For example, a quantum mechanics code mic
compute forces on a subset of atoms and pass those forces to LAMMPS. Or a continuum finite element (FE
simulation might use atom positions as boundary conditions on FE nodal points, compute a FE solution, anc
return interpolated forces on MD atoms.

LAMMPS can be coupled to other codes in at least 3 ways. Each has advantages and disadvantages, whicl
you'll have to think about in the context of your application.

(1) Define a new fix command that calls the other code. In this scenario, LAMMPS is the driver code. During
its timestepping, the fix is invoked, and can make library calls to the other code, which has been linked to
LAMMPS as a library. This is the way the POEMS package that performs constrained rigid—body motion on
groups of atoms is hooked to LAMMPS. See the fix_poems command for more details. See this section of t
documentation for info on how to add a new fix to LAMMPS.

4.9 SPC water model 35

http://www.rpi.edu/~anderk5/lab

(2) Define a new LAMMPS command that calls the other code. This is conceptually similar to method (1), bt
in this case LAMMPS and the other code are on a more equal footing. Note that now the other code is not
called during the timestepping of a LAMMPS run, but between runs. The LAMMPS input script can be used
to alternate LAMMPS runs with calls to the other code, invoked via the new command. The run command
facilitates this with its every option, which makes it easy to run a few steps, invoke the command, run a few
steps, invoke the command, etc.

In this scenario, the other code can be called as a library, as in (1), or it could be a stand-alone code, invok
by a system() call made by the command (assuming your parallel machine allows one or more processors ft
start up another program). In the latter case the stand—alone code could communicate with LAMMPS thru
files that the command writes and reads.

See _this section of the documentation for how to add a new command to LAMMPS.

(3) Use LAMMPS as a library called by another code. In this case the other code is the driver and calls
LAMMPS as needed. Or a wrapper code could link and call both LAMMPS and another code as libraries.
Again, the run command has options that allow it to be invoked with minimal overhead (no setup or clean-u
if you wish to do multiple short runs, driven by another program.

This section of the documentation describes how to build LAMMPS as a library. Once this is done, you can
interface with LAMMPS either via C++, C, or Fortran (or any other language that supports a vanilla C-like
interface, e.g. a scripting language). For example, from C++ you could create one (or more) "instances" of
LAMMPS, pass it an input script to process, or execute individual commands, all by invoking the correct
class methods in LAMMPS. From C or Fortran you can make function calls to do the same things.
Library.cpp and library.h contain such a C interface with the functions:

void lammps_open(int, char **, MPI_Comm, void **);
void lammps_close(void *);

void lammps_file(void *, char *);

char *lammps_command(doivd *, char *);

The functions contain C++ code you could write in a C++ application that was invoking LAMMPS directly.
Note that LAMMPS classes are defined wihin a LAMMPS namespace (LAMMPS_NS) if you use them from
another C++ application.

Two of the routines in library.cpp are of particular note. The lammps_open() function initiates LAMMPS and
takes an MPI communicator as an argument. It returns a pointer to a LAMMPS "object". As with C++, the
lammps_open() function can be called mutliple times, to create multiple instances of LAMMPS.

LAMMPS will run on the set of processors in the communicator. This means the calling code can run
LAMMPS on all or a subset of processors. For example, a wrapper script might decide to alternate between
LAMMPS and another code, allowing them both to run on all the processors. Or it might allocate half the
processors to LAMMPS and half to the other code and run both codes simultaneously before syncing them |
periodically.

Library.cpp contains a lammps_command() function to which the caller passes a single LAMMPS command
(a string). Thus the calling code can read or generate a series of LAMMPS commands (e.g. an input script)
one line at a time and pass it thru the library interface to setup a problem and then run it.

A few other sample functions are included in library.cpp, but the key idea is that you can write any functions
you wish to define an interface for how your code talks to LAMMPS and add them to library.cpp and

4.9 SPC water model 36

library.h. The routines you add can access any LAMMPS data. The examples/couple directory has example
C++ and C codes which show how a stand-alone code can link LAMMPS as a library, run LAMMPS on a
subset of processors, grab data from LAMMPS, change it, and put it back into LAMMPS.

4.11 Visualizing LAMMPS snapshots

LAMMPS itself does not do visualization, but snapshots from LAMMPS simulations can be visualized (and
analyzed) in a variety of ways.

LAMMPS snhapshots are created by_the dump command which can create files in several formats. The nativ
LAMMPS dump format is a text file (see "dump atom" or "dump custom") which can be visualized by the
xmovie program, included with the LAMMPS package. This produces simple, fast 2d projections of 3d
systems, and can be useful for rapid debugging of simulation geoemtry and atom trajectories.

Several programs included with LAMMPS as auxiliary tools can convert native LAMMPS dump files to other
formats. See the Section_tools doc page for details. The first is the ch2lmp tool, which contains a
lammps2pdb Perl script which converts LAMMPS dump files into PDB files. The second is the Imp2arc tool
which converts LAMMPS dump files into Accelrys's Insight MD program files. The third is the Imp2cfg tool
which converts LAMMPS dump files into CFG files which can be read into the AtomEye visualizer.

A Python-based toolkit distributed by our group can read native LAMMPS dump files, including custom
dump files with additional columns of user—specified atom information, and convert them to various formats
or pipe them into visualization software directly. See the Pizza.py WWW site for details. Specifically,
Pizza.py can convert LAMMPS dump files into PDB, XYZ, Ensight, and VTK formats. Pizza.py can pipe
LAMMPS dump files directly into the Raster3d and RasMol visualization programs. Pizza.py has tools that
do interactive 3d OpenGL visualization and one that creates SVG images of dump file snapshots.

LAMMPS can create XYZ files directly (via "dump xyz") which is a simple text—based file format used by
many visualization programs including VMD.

LAMMPS can create DCD files directly (via "dump dcd") which can be read by VMD in conjunction with a
CHARMM PSF file. Using this form of output avoids the need to convert LAMMPS snapshots to PDB files.
See the dump command for more information on DCD files.

LAMMPS can create XTC files directly (via "dump xtc") which is GROMACS file format which can also be
read by VMD for visualization. See the dump command for more information on XTC files.

4.12 Non-orthogonal simulation boxes

By default, LAMMPS uses an orthogonal simulation box to encompass the particles. The boundary commar
sets the boundary conditions of the box (periodic, non—periodic, etc). If the box size is xprd by yprd by zprd
then the 3 mutually orthogonal edge vectors of an orthogonal simulation box are a = (xprd,0,0), b = (0,yprd,(
and c = (0,0,zprd).

LAMMPS also allows non-orthogonal simulation boxes (triclinic symmetry) to be defined with 3 additional
"tilt" parameters which change the edge vectors of the simulation box to be a = (xprd,0,0), b = (xy,yprd,0),
and c = (xz,yz,zprd). The xy, xz, and yz parameters can be positive or negative. The simulation box must be
periodic in both dimensions associated with a tilt factor. For example, if xz != 0.0, then the x and z

4.11 Visualizing LAMMPS snapshots 37

http://164.107.79.177/Archive/Graphics/A
http://www.cs.sandia.gov/~sjplimp/pizza.html
http://www.ensight.com
http://www.ks.uiuc.edu/Research/vmd
http://www.ks.uiuc.edu/Research/vmd
http://www.ks.uiuc.edu/Research/vmd

dimensions must be periodic.

To avoid extremely tilted boxes (which would be computationally inefficient), no tilt factor can skew the box
more than half the distance of the parallel box length, which is the 1st dimension in the tilt factor (x for xz).
For example, if xlo = 2 and xhi = 12, then the x box length is 10 and the xy tilt factor must be between -5 an
5. Similarly, both xz and yz must be between —(xhi—xlo)/2 and +(yhi-ylo)/2. Note that this is not a limitation,
since if the maximum tilt factor is 5 (as in this example), then configurations with tilt = ..., =15, -5, 5, 15, 25,
... are all equivalent.

You tell LAMMPS to use a non-orthogonal box when the simulation box is defined. This happens in one of :
ways. If the create_box command is used with a region of style prism, then a hon—-orthogonal domain is sett
See the region command for details. If the read _data command is used to define the simulation box, and the
header of the data file contains a line with the "xy xz yz" keyword, then a non-orthogonal domain is setup.
See the read_data command for details. Finally, if the read_restart command reads a restart file which was
written from a simulation using a triclinic box, then a hon—orthogonal box will be enabled for the restarted
simulation.

Note that you can define a hon—orthogonal box with all 3 tilt factors = 0.0, so that it is initially orthogonal.
This is necessary if the box will ever become non—orthogonal.

One use of non-orthogonal boxes is to model solid-state crystals with triclinic symmetry. The lattice
command can be used with non—-orthogonal basis vectors to define a lattice that will tile a non—orthogonal
simulation box via the create_atoms command. Note that while the box edge vectors a,b,c cannot be arbitra
vectors (e.g. a must be aligned with the x axis), it is possible to rotate any crystal's basis vectors so that the
meet these restrictions.

A second use of non—-orthogonal boxes is to shear a bulk solid to study the response of the material. The fix
deform command can be used for this purpose. It allows dynamic control of the xy, xz, and yz tilt factors as
simulation runs.

Another use of hon—orthogonal boxes is to perform non—equilibrium MD (NEMD) simulations, as discussed
in the next section.

4.13 NEMD simulations

Non-equilibrium molecular dynamics or NEMD simulations are typically used to measure a fluid's
rheological properties such as viscosity. In LAMMPS, such simulations can be performed by first setting up
non-orthogonal simulation box (see the preceeding Howto section).

A shear strain can be applied to the simualation box at a desired strain rate by using the fix deform comman
The fix nvt/sllod command can be used to thermostat the sheared fluid and integrate the SLLOD equations
motion for the system. Fix nvt/sllod uses compute temp/deform to compute a thermal temperature by
subtracting out the streaming velocity of the shearing atoms. The velocity profile or other properties of the
fluid can be monitored via the fix ave/spatial command.

As discussed in the previous section on non—orthogonal simulation boxes, the amount of tilt or skew that cal
be applied is limited by LAMMPS for computation efficiency to be 1/2 of the paralell box length. However,
fix deform can be used to continuously strain a box by an arbitrary amount. As discussed in the fix deform
command, when the tilt reaches a limit, the box is re-shaped to the opposite limit which is an equivalent tilin
of the periodic plane. The strain rate can then continue to change as before. In a long NEMD simulation the:

4.13 NEMD simulations 38

box re-shaping may occur any number of times.

In a NEMD simulation, the "remap" option_of fix deform should be set to "remap v", since that_is what fix
nvt/sllod assumes to generate a velocity profile consistent with the applied shear strain rate.

4.14 Aspherical particles

LAMMPS supports ellipsoidal particles via the atom_style ellipsoid and shape commands. The latter defines
the 3 axes (diamaters) of a general ellipsoid,_The pair_style gayberne command can be used to define a
Gay-Berne (GB) potential for how such particles interact with each other and with spherical particles. The
GB potential is like a Lennard—-Jones (LJ) potential generalized for ellipsoids interacting in an
orientiation—dependent manner.

The orientation of ellipsoidal particles is stored as a quaternion. See the set command for a brief explanatiot
of quaternions and how the orientation of such particles can be initialized. The data file read by the read da
command also contains quaternions for each atom in the Atoms section if atom_style ellipsoid is being used
The_compute temp/asphere command can be used to calculate the temperature of a group of ellipsoidal
particles, taking account of rotational degrees of freedom. The motion of the particles can be integrated via
fix nve/asphere, fix nvt/asphere, or fix npt/asphere commands. All of these commands are part of the
ASPHERE package in LAMMPS.

Computationally, the cost for two ellipsoidal particles to interact is 30x or more expensive than for 2 LJ
particles. Thus if you are modeling a system with many spherical particles (e.g. as the solvent), then you
should insure sphere—sphere interactions are computed with the a cheaper potential than GB. This can be c
by setting the particle's 3 shape parameters to all be equal (a sphere). Additionally, the corresponding GB
potential coefficients can be set so the GB potential will treat the pair of particles as LJ spheres. Details are
given in the doc page for the pair_style gayberne. Alternatively, the pair_style hybrid potential can be used,
with the sphere—sphere interactions computed by another pair potential, such as pair_style lj/cut.

(Cornell) Cornell, Cieplak, Bayly, Gould, Merz, Ferguson, Spellmeyer, Fox, Caldwell, Kollman, JACS 117,
5179-5197 (1995).

(Horn) Horn, Swope, Pitera, Madura, Dick, Hura, and Head—Gordon, J Chem Phys, 120, 9665 (2004).

(MacKerell) MacKerell, Bashford, Bellott, Dunbrack, Evanseck, Field, Fischer, Gao, Guo, Ha, et al, J Phys
Chem, 102, 3586 (1998).

(Jorgensen) Jorgensen, Chandrasekhar, Madura, Impey, Klein, J Chem Phys, 79, 926 (1983).

4.14 Aspherical particles 39

Previous Section — LAMMPS WWW Site — LAMMPS Documentation — LAMMPS Commands — Next

Section

5. Example problems

The LAMMPS distribution includes an examples sub—directory with several sample problems. Each problern
is in a sub—directory of its own. Most are 2d models so that they run quickly, requiring at most a couple of
minutes to run on a desktop machine. Each problem has an input script (in.*) and produces a log file (log.*)
and dump file (dump.*) when it runs. Some use a data file (data.*) of initial coordinates as additional input. A
few sample log file outputs on different machines and different numbers of processors are included in the
directories to compare your answers to. E.g. a log file like log.crack.foo.P means it ran on P processors of
machine "foo".

The dump files produced by the example runs can be animated using the xmovie tool described in the
Additional Tools section of the LAMMPS documentation. Animations of many of these examples can be
viewed on the Movies section of the LAMMPS WWW Site.

These are the sample problems in the examples sub—directories:

big colloid
particles in a
colloid [small particle
solvent, 2d
system

crack
crack |propagation in a
2d solid

point dipolar
dipole |particles, 2d
system

ellipsoidal

particles in
spherical solvent,
2d system

Couette and
flow Poisseuille flow
in a 2d channel

frictional contact
of spherical
friction |asperities
between 2d
surfaces

spherical
indent [indenter into a 2(d
solid

MEAM test for
SiC and shear
(same as shear
examples)

ellipse

meam

5. Example problems 40

http://lammps.sandia.gov
http://lammps.sandia.gov

rapid melt of 3d

melt LJ system

self-assembly of
: small lipid-like

micelle .
molecules into
2d bilayers
energy

min minimization of
2d LI melt

non—equilibrium
nemd [MD of 2d
sheared system

flow around two
obstacl¢voids in a 2d
channel

dynamics of a
small solvated
peptide chain
(5—mer)

pouring of
granular particle
into a 3d box,
then chute flow
rigid bodies
modeled as
independent or
coupled
sideways shear
applied to 2d
solid, with and
without a void
Here is how you might run and visualize one of the sample problems:

peptide

[

pour

rigid

shear

cd indent
cp ../../src/lmp_linux . # copy LAMMPS executable to this dir
Imp_linux <in.indent # run the problem

Running the simulation produces the files dump.indent and log.lammps. You can visualize the dump file as
follows:

../..Itools/xmovie/xmovie —scale dump.indent

There is also a directory "couple" in the examples sub—directory, which contains a stand—alone code
umbrella.cpp that links LAMMPS as a library. The README describes how to build the code. The code itsel
runs LAMMPS on a subset of processors, sets up a LAMMPS problem by invoking LAMMPS input script
commands one at a time, does a run, grabs atom coordinates, changes one atom position, puts them back i
LAMMPS, and does another run.

This illustrates how an umbrella code could include new models and physics while using LAMMPS to

5. Example problems 41

perform MD, or how the umbrella code could call both LAMMPS and some other code to perform a coupled
calculation.

5. Example problems 42

Previous Section — LAMMPS WWW Site — LAMMPS Documentation — LAMMPS Commands — Next

Section

6. Performance &scalability

LAMMPS performance on several prototypical benchmarks and machines is discussed on the Benchmarks
page of the LAMMPS WWW Site where CPU timings and parallel efficiencies are listed. Here, the
benchmarks are described briefly and some useful rules of thumb about their performance are highlighted.

These are the 5 benchmark problems:

1. LJ = atomic fluid, Lennard-Jones potential with 2.5 sigma cutoff (55 neighbors per atom), NVE
integration

2. Chain = bead-spring polymer melt of 200—mer chains, FENE bonds and LJ pairwise interactions wit
a 27(1/6) sigma cutoff (5 neighbors per atom), NVE integration

3. EAM = metallic solid, Cu EAM potential with 4.95 Angstrom cutoff (45 neighbors per atom), NVE
integration

4. Chute = granular chute flow, frictional history potential with 1.1 sigma cutoff (7 neighbors per atom),
NVE integration

5. Rhodo = rhodopsin protein in solvated lipid bilayer, CHARMM force field with a 10 Angstrom LJ
cutoff (440 neighbors per atom), particle—particle particle-mesh (PPPM) for long-range Coulombics,
NPT integration

The input files for running the benchmarks are included in the LAMMPS distribution, as are sample output
files. Each of the 5 problems has 32,000 atoms and runs for 100 timesteps. Each can be run as a serial
benchmarks (on one processor) or in parallel. In parallel, each benchmark can be run as a fixed-size or
scaled-size problem. For fixed—size benchmarking, the same 32K atom problem is run on various numbers
processors. For scaled-size benchmarking, the model size is increased with the number of processors. E.g.
8 processors, a 256K—-atom problem is run; on 1024 processors, a 32—million atom problem is run, etc.

A useful metric from the benchmarks is the CPU cost per atom per timestep. Since LAMMPS performance
scales roughly linearly with problem size and timesteps, the run time of any problem using the same model
(atom style, force field, cutoff, etc) can then be estimated. For example, on a 1.7 GHz Pentium desktop
machine (Intel icc compiler under Red Hat Linux), the CPU run-time in seconds/atom/timestep for the 5
problems is

Problem; LJ Chain | EAM Chute |Rhodopsir]
CPU/atom/step4.55E-62.18E-6/9.38E-6{2.18E-6| 1.11E-4

Ratioto LJ} 1.0 0.48 2.06 0.48 24.5

The ratios mean that if the atomic LJ system has a normalized cost of 1.0, the bead—spring chains and gran
systems run 2x faster, while the EAM metal and solvated protein models run 2x and 25x slower respectively
The bulk of these cost differences is due to the expense of computing a particular pairwise force field for a
given number of neighbors per atom.

Performance on a parallel machine can also be predicted from the one—processor timings if the parallel
efficiency can be estimated. The communication bandwidth and latency of a particular parallel machine
affects the efficiency. On most machines LAMMPS will give fixed—size parallel efficiencies on these
benchmarks above 50% so long as the atoms/processor count is a few 100 or greater — i.e. on 64 to 128
processors. Likewise, scaled-size parallel efficiencies will typically be 80% or greater up to very large
processor counts. The benchmark data on the LAMMPS WWW Site gives specific examples on some

6. Performance &scalability 43

http://lammps.sandia.gov
http://lammps.sandia.gov
http://lammps.sandia.gov

different machines, including a run of 3/4 of a billion LJ atoms on 1500 processors that ran at 85% parallel
efficiency.

6. Performance &scalability 44

Previous Section — LAMMPS WWW Site — LAMMPS Documentation — LAMMPS Commands — Next

Section

7. Additional tools

LAMMPS is designed to be a computational kernel for performing molecular dynamics computations.
Additional pre— and post—processing steps are often necessary to setup and analyze a simulation. A few
additional tools are provided with the LAMMPS distribution and are described in this section.

Our group has also written and released a separate toolkit_called Pizza.py which provides tools for doing
setup, analysis, plotting, and visualization for LAMMPS simulations. Pizza.py is written in Python and is
available for download from the Pizza.py WWW site.

Note that many users write their own setup or analysis tools or use other existing codes and convert their
output to a LAMMPS input format or vice versa. The tools listed here are included in the LAMMPS
distribution as examples of auxiliary tools. Some of them are not actively supported by Sandia, as they were
contributed by LAMMPS users. If you have problems using them, we can direct you to the authors.

The source code for each of these codes is in the tools sub—directory of the LAMMPS distribution. There is
Makefile (which you may need to edit for your platform) which will build several of the tools which reside in
that directory. Some of them are larger packages in their own sub—directories with their own Makefiles.

e amber2lammps
* binary2txt

e ch2imp

* chain

» data2xmovie

e Imp2arc

« Imp2cfg

e Imp2traj
* matlab

* micelle2d
e msi2lmp

* pymol_asphere
* restart2data

« thermo_extract
e Xmovie

amber2imp tool

The amber2lmp sub-directory contain two Python scripts for converting files back—and—forth between the
AMBER MD code and LAMMPS. See the README file in amber2lmp for more information.

These tools were written by Keir Novik while he was at Queen Mary University of London. Keir is no longer
there and cannot support these tools which are out—-of-date with respect to the current LAMMPS version (al
maybe with respect to AMBER as well). Since we don't use these tools at Sandia, you'll need to experiment
with them and make necessary modifications yourself.

7. Additional tools 45

http://lammps.sandia.gov
http://www.cs.sandia.gov/~sjplimp/pizza.html
http://www.python.org
http://www.cs.sandia.gov/~sjplimp/pizza.html

binary2txt tool

The file binary2txt.cpp converts one or more binary LAMMPS dump file into ASCII text files. The syntax for
running the tool is

binary2txt filel file2 ...

which creates filel.txt, file2.txt, etc. This tool must be compiled on a platform that can read the binary file
created by a LAMMPS run, since binary files are not compatible across all platforms.

ch2imp tool

The ch2Ilmp sub-directory contains tools for converting files back—and—forth between the CHARMM MD
code and LAMMPS.

They are intended to make it easy to use CHARMM as a builder and as a post—processor for LAMMPS.
Using charmmz2lammps.pl, you can convert an ensemble built in CHARMM into its LAMMPS equivalent.
Using lammps2pdb.pl you can convert LAMMPS atom dumps into pdb files.

See the README file in the ch2Ilmp sub—directory for more information.

These tools were created by Pieter in't Veld (pjintve at sandia.gov) and Paul Crozier (pscrozi at sandia.gov)
Sandia.

chain tool

The file chain.f creates a LAMMPS data file containing bead-spring polymer chains and/or monomer solven
atoms. It uses a text file containing chain definition parameters as an input. The created chains and solvent
atoms can strongly overlap, so LAMMPS needs to run the system initially with a "soft" pair potential to
un—overlap it. The syntax for running the tool is

chain <def.chain > data.file

See the def.chain or def.chain.ab files in the tools directory for examples of definition files. This tool was use
to create the system for the chain benchmark.

data2xmovie tool

The file data2xmovie.c converts a LAMMPS data file into a snapshot suitable for visualizing with the xmovie
tool, as if it had been output with a dump command from LAMMPS itself. The syntax for running the tool is

data2xmovie options <infile > outfile

See the top of the data2xmovie.c file for a discussion of the options.

Imp2arc tool
The Imp2arc sub-directory contains a tool for converting LAMMPS output files to the format for Accelrys's

Insight MD code (formerly MSI/Biosysm and its Discover MD code). See the README file for more
information.

binary2txt tool 46

This tool was written by John Carpenter (Cray), Michael Peachey (Cray), and Steve Lustig (Dupont). John is
now at the Mayo Clinic (jec at mayo.edu), but still fields questions about the tool.

This tool was updated for the current LAMMPS C++ version by Jeff Greathouse at Sandia (jagreat at
sandia.gov).

Imp2cfg tool

The Imp2cfg sub—directory contains a tool for converting LAMMPS output files into a series of *.cfg files
which can be read into the AtomEye visualizer. See the README file for more information.

This tool was written by Ara Kooser at Sandia (askoose at sandia.gov).

Imp2traj tool

The Imp2traj sub—directory contains a tool for converting LAMMPS output files into 3 analysis files. One file
can be used to create contour maps of the atom positions over the course of the simulation. The other two fi
provide density profiles and dipole moments. See the README file for more information.

This tool was written by Ara Kooser at Sandia (askoose at sandia.gov).

matlab tool

The matlab sub—directory contains several MATLAB scripts for post—processing LAMMPS output. The
scripts include readers for log and dump files, a reader for radial distribution output from the fix rdf commanc
a reader for EAM potential files, and a converter that reads LAMMPS dump files and produces CFG files the
can be visualized with the AtomEye visualizer.

See the README.pdf file for more information.

These scripts were written by Arun Subramaniyan at Purdue Univ (asubrama at purdue.edu).

micelle2d tool

The file micelle2d.f creates a LAMMPS data file containing short lipid chains in a monomer solution. It uses
a text file containing lipid definition parameters as an input. The created molecules and solvent atoms can
strongly overlap, so LAMMPS needs to run the system initially with a "soft" pair potential to un—overlap it.
The syntax for running the tool is

micelle2d <def.micelle2d > data.file

See the def.micelle2d file in the tools directory for an example of a definition file. This tool was used to creat
the system for the micelle example.

msi2lmp tool

The msi2lmp sub-directory contains a tool for creating LAMMPS input data files from Accelrys's Insight MD
code (formerly MSI/Biosysm and its Discover MD code). See the README file for more information.

Imp2cfg tool 47

http://164.107.79.177/Archive/Graphics/A
http://www.mathworks.com
http://164.107.79.177/Archive/Graphics/A

This tool was written by John Carpenter (Cray), Michael Peachey (Cray), and Steve Lustig (Dupont). John is
now at the Mayo Clinic (jec at mayo.edu), but still fields questions about the tool.

This tool may be out-of-date with respect to the current LAMMPS and Insight versions. Since we don't use
at Sandia, you'll need to experiment with it yourself.

pymol_asphere tool

The pymol_asphere sub-directory contains a tool for converting a LAMMPS dump file that contains
orientation info for ellipsoidal particles into an input file for_the PyMol visualization package.

Specifically, the tool triangulates the ellipsoids so they can be viewed as true ellipsoidal particles within
PyMol. See the README and examples directory within pymol_asphere for more information.

This tool was written by Mike Brown at Sandia.

restart2data tool

The file restart2data.cpp converts a binary LAMMPS restart file into an ASCII data file. The syntax for
running the tool is

restart2data restart—file data—file

This tool must be compiled on a platform that can read the binary file created by a LAMMPS run, since
binary files are not compatible across all platforms.

Note that a text data file has less precision than a binary restart file. Hence, continuing a run from a convert
data file will typically not conform as closely to a previous run as will restarting from a binary restart file.

If a "%" appears in the specified restart—file, the tool expects a set of multiple files to exist._See the restart al
write_restart commands for info on how such sets of files are written by LAMMPS, and how the files are
named.

thermo_extract tool

The thermo_extract tool reads one of more LAMMPS log files and extracts a thermodynamic value (e.g.
Temp, Press). It spits out the time,value as 2 columns of numbers so the tool can be used as a quick way to
plot some quantity of interest. See the header of the thermo_extract.c file for the syntax of how to run it and
other details.

This tool was written by Vikas Varshney at Wright Patterson AFB (vikas.varshney at gmail.com).

xmovie tool

The xmovie tool is an X-based visualization package that can read LAMMPS dump files and animate them.
is in its own sub—directory with the tools directory. You may need to modify its Makefile so that it can find
the appropriate X libraries to link against.

The syntax for running xmovie is
xmovie options dump.filel dump.file2 ...

pymol_asphere tool 48

http://pymol.sourceforge.net

If you just type "xmovie" you will see a list of options. Note that by default, LAMMPS dump files are in
scaled coordinates, so you typically need to use the —scale option with xmovie. When xmovie runs it opens
visualization window and a control window. The control options are straightforward to use.

Xmovie was mostly written by Mike Uttormark (U Wisconsin) while he spent a summer at Sandia. It displays
2d projections of a 3d domain. While simple in design, it is an amazingly fast program that can render large
numbers of atoms very quickly. It's a useful tool for debugging LAMMPS input and output and making sure
your simulation is doing what you think it should. The animations on the Examples page of the LAMMPS
WWW site were created with xmovie.

I've lost contact with Mike, so | hope he's comfortable with us distributing his great tool!

pymol_asphere tool 49

http://lammps.sandia.gov
http://lammps.sandia.gov

Previous Section — LAMMPS WWW Site — LAMMPS Documentation — LAMMPS Commands — Next

Section

8. Modifying &extending LAMMPS

LAMMPS is designed in a modular fashion so as to be easy to modify and extend with new functionality. In
fact, about 75% if its source code is files added in this fashion.

In this section, changes and additions users can make are listed along with minimal instructions. The best w
to add a new feature is to find a similar feature in LAMMPS and look at the corresponding source and heade
files to figure out what it does. You will need some knowledge of C++ to be able to understand the hi-level
structure of LAMMPS and its class organization, but functions (class methods) that do actual computations
are written in vanilla C-style code and operate on simple C-style data structures (vectors and arrays).

Most of the new features described in this section require you to write a new C++ derived class (except for
exceptions described below, where you can make small edits to existing files). Creating a new class require
files, a source code file (*.cpp) and a header file (*.h). The derived class must provide certain methods to
work as a new option. Depending on how different your new feature is compared to existing features, you ce
either derive from the base class itself, or from a derived class that already exists. Enabling LAMMPS to
invoke the new class is as simple as adding two lines to the style_user.h file, in the same syntax as other
LAMMPS classes are specified in the style.h file.

The advantage of C++ and its object—orientation is that all the code and variables needed to define the new
feature are in the 2 files you write, and thus shouldn't make the rest of LAMMPS more complex or cause
side—effect bugs.

Here is a concrete example. Suppose you write 2 files pair_foo.cpp and pair_foo.h that define a new class
PairFoo that computes pairwise potentials described in the classic 1997 paper by Foo, et al. If you wish to
invoke those potentials in a LAMMPS input script with a command like

pair_style foo 0.1 3.5

you put your 2 files in the LAMMPS src directory, add 2 lines to the style_user.h file, and re—-make the code.
The first line added to style_user.h would be

PairStyle(foo,PairFoo)

in the #ifdef PairClass section, where "foo" is the style keyword in the pair_style command, and PairFoo is i
class name in your C++ files.

The 2nd line added to style_user.h would be

#include "pair_foo.h"

in the #ifdef PairInclude section, where pair_foo.h is the name of your new include file.

When you re-make LAMMPS, your new pairwise potential becomes part of the executable and can be

invoked with a pair_style command like the example above. Arguments like 0.1 and 3.5 can be defined and
processed by your new class.

8. Modifying &extending LAMMPS 50

http://lammps.sandia.gov

Here is a list of the new features that can be added in this way:

» Atom styles
» Bond, angle, dihedral. improper potentials
« Compute styles

» Dump styles
« Fix styles which include integrators, temperature and pressure control, force constraints, boundary

conditions, diagnostic output, etc
« Input script commands
» Kspace computations
* Minimization solvers
« Pairwise potentials
» Region styles

As illustrated by the pairwise example, these options are referred to in the LAMMPS documentation as the
"style" of a particular command.

The instructions below give the header file for the base class that these styles are derived from. Public
variables in that file are ones used and set by the derived classes which are also used by the base class.
Sometimes they are also used by the rest of LAMMPS. Virtual functions in the base class header file which
are set = 0 are ones you must define in your new derived class to give it the functionality LAMMPS expects.
Virtual functions that are not set to 0 are functions you can optionally define.

Additionally, new output options can be added directly to the thermo.cpp, dump_custom.cpp, and variable.c
files as explained in these sections:

« Dump custom output options
» Thermodynamic output options
« Variable options

Here are additional guidelines for modifying LAMMPS and adding new functionality:

« Think about whether what you want to do would be better as a pre— or post—processing step. Many
computations are more easily and more quickly done that way.

« Don't do anything within the timestepping of a run that isn't parallel. E.g. don't accumulate a bunch o
data on a single processor and analyze it. You run the risk of seriously degrading the parallel
efficiency.

« If your new feature reads arguments or writes output, make sure you follow the unit conventions
discussed by the units command.

« If you add something you think is truly useful and doesn't impact LAMMPS performance when it isn't
used, send an email to the developers. We might be interested in adding it to the LAMMPS
distribution.

Atom styles
Classes that define an atom style are derived from the Atom class. The atom style determines what quantiti

are associated with an atom. A new atom style can be created if one of the existing atom styles does not de
all the arrays you need to store and communicate with atoms.

Atom styles 51

http://lammps.sandia.gov/authors.html

Atom_vec_atomic.cpp is a simple example of an atom style.

Here is a brief description of methods you define in your new derived class. See atom.h for details.

Atom styles

grow

re—allocate
atom arrays to
longer lengths

copy

copy info for
one atom to
another atom's
array locations

pack _comm

store an atom's
info in a buffer
communicated
every timestep

unpack_comm

retrieve an
atom's info
from the buffer

pack_reverse

store an atom's
info in a buffer
communicating|
partial forces

unpack_reverse

retrieve an
atom's info
from the buffer

pack_border

store an atom's
info in a buffer
communicated
on neighbor
re—builds

unpack_border

retrieve an
atom's info
from the buffer

pack_exchange

store all an
atom's info to
migrate to
another
processor

unpack_exchangatom's info

retrieve an

from the buffer

size_restart

number of
restart
quantities
associated with
proc's atoms

pack_restart

pack atom
gquantities into T

52

buffer

unpack atom
unpack_restart |[quantities from
a buffer

create an
Create_atom individual atom
of this style

parse an atom
data_atom line from the
data file

tally memory
memory_usage [allocated by
atom arrays
The constructor of the derived class sets values for several variables that you must set when defining a new
atom style. The atom arrays themselves are defined in atom.cpp. Search for the word "customize" and you
will find locations you will need to modify.

Bond, angle, dihedral, improper potentials

Classes that compute molecular interactions are derived from the Bond, Angle, Dihedral, and Improper
classes. New styles can be created to add new potentials to LAMMPS.

Bond_harmonic.cpp is the simplest example of a bond style. Ditto for the harmonic forms of the angle,
dihedral, and improper style commands.

Here is a brief description of methods you define in your new derived bond class. See bond.h, angle.h,
dihedral.h, and improper.h for details.

compute the
compute molecular
interactions

set
coefficients
for one bond
type

length of
equilibrium_distancfond, used
by SHAKE

writes/readsg
write &read_restart|coeffs to
restart files

force and
single energy of a
single bond

coeff

Bond, angle, dihedral, improper potentials 53

Compute styles

Classes that compute scalar and vector quantities like temperature and the pressure tensor, as well as clas:
that compute per—atom quantities like kinetic energy and the centro—symmetry parameter are derived from 1
Compute class. New styles can be created to add new calculations to LAMMPS.

Compute_temp.cpp is a simple example of computing a scalar temperature. Compute_ke_atom.cpp is a
simple example of computing per—atom kinetic energy.

Here is a brief description of methods you define in your new derived class. See compute.h for details.

compute a
compute_scalar [scalar
quantity
compute a
compute_vector |vector of
guantities

compute one

compute_perato g’ more
- guantities pe

atom

pack a buffer

pack_comm with items to

communicate

unpack the
buffer

pack a buffer
with items to
reverse

communicate

unpack the
buffer

tally memory
usage

unpack_comm

pack_reverse

unpack_reverse

memory_usage

Dump styles

Dump custom output options

Classes that dump per—atom info to files are derived from the Dump class. To dump new quantities or in a
new format, a new derived dump class can be added, but it is typically simpler to modify the DumpCustom
class contained in the dump_custom.cpp file.

Dump_atom.cpp is a simple example of a derived dump class.

Here is a brief description of methods you define in your new derived class. See dump.h for details.

Compute styles 54

write the
header

write_headeiectlon of
shapshot
of atoms

count the
number of
lines a
processof
will
output
pack a
proc's
pack output
data into a
buffer

write a
proc's
datato a
file

See the dump command and its custom style for a list of keywords for atom information that can already be
dumped by DumpCustom. It includes options to dump per—atom info from Compute classes, so adding a ne
derived Compute class is one way to calculate new quantities to dump.

count

write_data

Alternatively, you can add new keywords to the dump custom command. Search for the word "customize" in
dump_custom.cpp to see the half-dozen or so locations where code will need to be added.

Fix styles

In LAMMPS, a "fix" is any operation that is computed during timestepping that alters some property of the
system. Essentially everything that happens during a simulation besides force computation, neighbor list
construction, and output, is a "fix". This includes time integration (update of coordinates and velocities), forc
constraints or boundary conditions (SHAKE or walls), and diagnostics (compute a diffusion coefficient). New
styles can be created to add new options to LAMMPS.

Fix_setforce.cpp is a simple example of setting forces on atoms to prescribed values. There are dozens of f
options already in LAMMPS; choose one as a template that is similar to what you want to implement.

Here is a brief description of methods you can define in your new derived class. See fix.h for details.

determines when
the fix is called
setmask .
during the
timestep
. initialization
init
before a run
setup

Fix styles 55

Fix styles

called
immediately
before the 1st
timestep

initial_integrate

called at very
beginning of
each timestep

pre_exchange

called before
atom exchange
on
re—neighboring
steps

pre_neighbor

called before
neighbor list
build

post_force

called after pair
&molecular
forces are
computed

final_integrate

called at end of
each timestep

end_of step

called at very
end of timestep

write_restart

dumps fix info tq
restart file

restart

uses info from
restart file to
re—initialize the
fix

grow_arrays

allocate memory
for atom—-based
arrays used by
fix

copy_arrays

copy atom info
when an atom
migrates to a

new processor

memory_usage

report memory
used by fix

pack_exchange

store atom's data
in a buffer

unpack_exchange

retrieve atom's
data from a
buffer

pack_restart

store atom's data
for writing to
restart file

56

retrieve atom's
unpack_restart data from a
restart file buffe

size of atom's
data

max size of
atom's data

same as
initial_integrate_respdnitial_integrate,
but for rRESPA
same as
post_force respa |post_force, but
for RESPA

same as
final_integrate_respalfinal_integrate,
but for rRESPA
pack a buffer to
communicate a
per—atom
quantity
unpack a buffer
to communicate|
a per—atom
guantity

pack a buffer to
reverse
pack_reverse_comm|communicate a
per—atom
quantity
unpack a buffer
to reverse
unpack_reverse comaommunicate a
per—atom
quantity

compute
quantities for
thermodynamic
output
Typically, only a small fraction of these methods are defined for a particular fix. Setmask is mandatory, as it
determines when the fix will be invoked during the timestep. Fixes that perform time integration (nve, nvt,
npt) implement initial_integrate and final_integrate to perform velocity Verlet updates. Fixes that constrain
forces implement post_force. Fixes that perform diagnostics typically implement end_of _step. For an
end_of_step fix, one of your fix arguments must be the variable "nevery" which is used to determine when {c
call the fix. By convention, this is the first argument the fix defines (after the ID, group—ID, style).

size_restart

maxsize_restart

pack_comm

unpack_comm

thermo

If the fix needs to store information for each atom that persists from timestep to timestep, it can manage tha
memory and migrate the info with the atoms as they move from processors to processor by implementing th
grow_arrays, copy_arrays, pack_exchange, and unpack_exchange methods. Similarly, the pack_restart anc

Fix styles 57

unpack_restart methods can be implemented to store information about the fix in restart files. If you wish an
integrator or force constraint fix to work with rRESPA (see the run_style command), the initial_integrate,
post_force integrate, and final_integrate_respa methods can be implemented. The thermo method enables
fix to contribute values to thermodynamic output, as printed quantities and/or to be summed to the potential
energy of the system.

Input script commands

New commands can be added to LAMMPS input scripts by adding new classes that have a "command"
method and are listed in the Command sections of style.h (or style_user.h). For example, the create_atoms,
read_data, velocity, and run commands are all implemented in this fashion. When such a command is
encountered in the LAMMPS input script, LAMMPS simply creates a class with the corresponding name,
invokes the "command" method of the class, and passes it the arguments from the input script. The commal
method can perform whatever operations it wishes on LAMMPS data structures.

The single method your new class must define is as follows:

operations
erformed
y the new
command

Of course, the new class can define other methods and variables as needed.

commanaﬁ

Kspace computations

Classes that compute long-range Coulombic interactions via K-space represenations (Ewald, PPPM) are
derived from the KSpace class. New styles can be created to add new K-space options to LAMMPS.

Ewald.cpp is an example of computing K-space interactions.

Here is a brief description of methods you define in your new derived class. See kspace.h for details.

initialize the
init calculation
before a run

computation
before the 1st
timestep of a
run

every—-timestef
computation

tally of memory
memory_usa%sage

setup

compute

Input script commands 58

Minimization solvers

Classes that perform energy minimization derived from the Min class. New styles can be created to add new

minimization algorithms to LAMMPS.

Min_cg.cpp is an example of conjugate gradient minimization.

Here is a brief description of methods you define in your new derived class. See min.h for details.

init

initialize the
minimization
before a run

run

perform the
minimization

tally of

memory_usageemory

usage

Pairwise potentials

Classes that compute pairwise interactions are derived from the Pair class. In LAMMPS, pairwise calculatiol
include manybody potentials such as EAM or Tersoff where particles interact without a static bond topology.

New styles can be created to add new pair potentials to LAMMPS.

Pair_lj_cut.cpp is a simple example of a Pair class, though it includes some optional methods to enable its u

with rRESPA.

Here is a brief description of the class methods in pair.h:

compute

workhorse
routine that
computes
pairwise
interactions

settings

reads the
input script
line with
arguments
you define

coeff

set
coefficients
for one i,j

type pair

init_one

perform
initialization
for one i,j
type pair

init_style

Minimization solvers

59

initialization
specific to

this pair style
write/read i,j
write &read_restart pair coeffs tq
restart files

write/read
write &read restart settin %Iopal

- — ettings to
restart files

force and
energy of a
single
single pairwise
interaction
between 2
atoms

versions of
compute_inner/middIe/outé:rorm)me
used by

rRESPA

The inner/middle/outer routines are optional.

Region styles

Classes that define geometric regions are derived from the Region class. Regions are used elsewhere in
LAMMPS to group atoms, delete atoms to create a void, insert atoms in a specified region, etc. New styles
can be created to add new region shapes to LAMMPS.

Region_sphere.cpp is an example of a spherical region.

Here is a brief description of methods you define in your new derived class. See region.h for details.

determine
whether a
point is in
the region

match

Thermodynamic output options

There is one class that computes and prints thermodynamic information to the screen and log file; see the fi
thermo.cpp.

There are several styles defined in thermo.cpp: "one", "multi”, "granular”, etc. There is also a flexible
"custom” style which allows the user to explicitly list keywords for quantities to print when thermodynamic
info is output. See the thermo_style command for a list of defined quantities.

Region styles 60

The thermo styles (one, multi, etc) are simply lists of keywords. Adding a new style thus only requies definin
a new list of keywords. Search for the word "customize" with references to "thermo style" in thermo.cpp to
see the two locations where code will need to be added.

New keywords can also be added to thermo.cpp to compute new quantities for output. Search for the word
"customize" with references to "keyword" in thermo.cpp to see the several locations where code will need to
be added.

Note that the thermo_style custom command already allows for thermo output of quantities calculated by
fixes, computes, and variables. Thus, it may be simpler to compute what you wish via one of those construc
than by adding a new keyword to the thermo command.

Variable options

There is one class that computes and stores variable information in LAMMPS; see the file variable.cpp. The
value associated with a variable can be periodically printed to the screen via the print, fix print, or
thermo_style custom commands. Variables of style "equal” can compute complex equations that involve the
following types of arguments:

thermo keywords = ke, vol, atoms, ... other variables =v_a, v_myvar, ... math functions = div(x,y), mult(x,y),
add(x,y), ... group functions = mass(group), xcm(group,X), ... atom values = x123, y3, vx34, ... compute
values = ¢c_mytemp0, c_thermo_pressure3, ...

Adding keywords for the thermo_style custom command (which can then be accessed by variables) was
discussed here on this page.

Adding a new math function of one or two arguments can be done by editing one section of the
Variable:.evaulate() method. Search for the word "customize" to find the appropriate location.

Adding a new group function can be done by editing one section of the Variable::evaulate() method. Search
for the word "customize" to find the appropriate location. You may need to add a new method to the Group
class as well (see the group.cpp file).

Accessing a new atom-based vector can be done by editing one section of the Variable:.evaulate() method.
Search for the word "customize” to find the appropriate location.

Adding new_compute styles (whose calculated values can then be accessed by variables) was discussed he
on this page.

(Foo) Foo, Morefoo, and Maxfoo, J of Classic Potentials, 75, 345 (1997).

Variable options 61

Previous Section — LAMMPS WWW Site — LAMMPS Documentation — LAMMPS Commands — Next

Section

9. Errors

This section describes the various kinds of errors you can encounter when using LAMMPS.

9.1 Common problems
9.2 Reporting bugs
9.3 Error &warning messages

9.1 Common problems

If two LAMMPS runs do not produce the same answer on different machines or different numbers of
processors, this is typically not a bug. In theory you should get identical answers on any number of processc
and on any machine. In practice, numerical round-off can cause slight differences and eventual divergence
molecular dynamics phase space trajectories within a few 100s or few 1000s of timesteps. However, the
statistical properties of the two runs (e.g. average energy or temperature) should still be the same.

If the_velocity command is used to set initial atom velocities, a particular atom can be assigned a different
velocity when the problem on different machines. Obviously, this means the phase space trajectories of the
two simulations will rapidly diverge. See the discussion of the loop option_in the velocity command for
details.

A LAMMPS simulation typically has two stages, setup and run. Most LAMMPS errors are detected at setup
time; others like a bond stretching too far may not occur until the middle of a run.

LAMMPS tries to flag errors and print informative error messages so you can fix the problem. Of course
LAMMPS cannot figure out your physics mistakes, like choosing too big a timestep, specifying invalid force
field coefficients, or putting 2 atoms on top of each other! If you find errors that LAMMPS doesn't catch that
you think it should flag, please send an email to the developers.

If you get an error message about an invalid command in your input script, you can determine what commat
is causing the problem by looking in the log.lammps file or using the echo command to see it on the screen.
For a given command, LAMMPS expects certain arguments in a specified order. If you mess this up,
LAMMPS will often flag the error, but it may read a bogus argument and assign a value that is valid, but not
what you wanted. E.g. trying to read the string "abc" as an integer value and assigning the associated varial
a value of 0.

Generally, LAMMPS will print a message to the screen and exit gracefully when it encounters a fatal error.
Sometimes it will print a WARNING and continue on; you can decide if the WARNING is important or not.
If LAMMPS crashes or hangs without spitting out an error message first then it could be a bug (see this
section) or one of the following cases:

LAMMPS runs in the available memory a processor allows to be allocated. Most reasonable MD runs are
compute limited, not memory limited, so this shouldn't be a bottleneck on most platforms. Almost all large
memory allocations in the code are done via C—style malloc's which will generate an error message if you rt
out of memory. Smaller chunks of memory are allocated via C++ "new" statements. If you are unlucky you
could run out of memory just when one of these small requests is made, in which case the code will crash o

9. Errors 62

http://lammps.sandia.gov
http://lammps.sandia.gov/authors.html

hang (in parallel), since LAMMPS doesn't trap on those errors.

lllegal arithmetic can cause LAMMPS to run slow or crash. This is typically due to invalid physics and
numerics that your simulation is computing. If you see wild thermodynamic values or NaN values in your
LAMMPS output, something is wrong with your simulation.

In parallel, one way LAMMPS can hang is due to how different MPI implementations handle buffering of
messages. If the code hangs without an error message, it may be that you need to specify an MPI setting or
two (usually via an environment variable) to enable buffering or boost the sizes of messages that can be
buffered.

9.2 Reporting bugs
If you are confident that you have found a bug in LAMMPS, please send an email to the developers.

First, check the "New features and bug fixes" section of the LAMMPS WWW site to see if the bug has
already been reported or fixed.

If not, the most useful thing you can do for us is to isolate the problem. Run it on the smallest number of
atoms and fewest number of processors and with the simplest input script that reproduces the bug.

In your email, describe the problem and any ideas you have as to what is causing it or where in the code the
problem might be. We'll request your input script and data files if necessary.

9.3 Error &warning Messages

These are two alphabetic lists of the ERROR and WARNING messages LAMMPS prints out and the reason
why. If the explanation here is not sufficient, the documentation for the offending command may help.
Grepping the source files for the text of the error message and staring at the source code and comments is
not a bad idea! Note that sometimes the same message can be printed from multiple places in the code.

Errors:

1-3 bond count is inconsistent
An inconsistency was detected when computing the number of 1-3 neighbors for each atom. This
likely means something is wrong with the bond topologies you have defined.

1-4 bond count is inconsistent
An inconsistency was detected when computing the number of 1-4 neighbors for each atom. This
likely means something is wrong with the bond topologies you have defined.

All angle coeffs are not set
All angle coefficients must be set in the data file or by the angle_coeff command before running a
simulation.

All bond coeffs are not set
All bond coefficients must be set in the data file or by the bond_coeff command before running a
simulation.

All dihedral coeffs are not set
All dihedral coefficients must be set in the data file or by the dihedral_coeff command before running
a simulation.

All dipole moments are not set

9.2 Reporting bugs 63

http://lammps.sandia.gov/authors.html
http://lammps.sandia.gov

For atom styles that define dipole moments for each atom type, all moments must be set in the data
file or by the dipole command before running a simulation.
All improper coeffs are not set
All improper coefficients must be set in the data file or by the improper_coeff command before
running a simulation.
All masses are not set
For atom styles that define masses for each atom type, all masses must be set in the data file or by 1
mass command before running a simulation. They must also be set before using the velocity
command.
All pair coeffs are not set
All pair coefficients must be set in the data file or by the pair_coeff command before running a
simulation.
All shapes are not set
All atom types must have a shape setting, even if the particles are spherical.
All universe/uloop variables must have same # of values
Self-explanatory.
All variables in next command must be same style
Self-explanatory.
Angle atom missing in delete_bonds
The delete_bonds command cannot find one or more atoms in a particular angle on a particular
processor. The pairwise cutoff is too short or the atoms are too far apart to make a valid angle.
Angle atom missing in set command
The set command cannot find one or more atoms in a particular angle on a particular processor. The
pairwise cutoff is too short or the atoms are too far apart to make a valid angle.
Angle atoms %d %d %d missing on proc %d at step %d
One or more of 3 atoms needed to compute a particular angle are missing on this processor. Typical
this is because the pairwise cutoff is set too short or the angle has blown apart and an atom is too fa
away.
Angle coeff for hybrid has invalid style
Angle style hybrid uses another angle style as one of its coefficients. The angle style used in the
angle_coeff command or read from a restart file is not recognized.
Angle coeffs are not set
No angle coefficients have been assigned in the data file or via the angle_coeff command.
Angle style hybrid cannot have hybrid as an argument
Self-explanatory.
Angle style hybrid cannot use same angle style twice
Self-explanatory.
Angle_coeff command before angle_style is defined
Coefficients cannot be set in the data file or via the angle _coeff command until an angle_style has
been assigned.
Angle_coeff command before simulation box is defined
The angle_coeff command cannot be used before a read_data, read_restart, or create_box commar
Angle_coeff command when no angles allowed
The chosen atom style does not allow for angles to be defined.
Angle_style command when no angles allowed
The chosen atom style does not allow for angles to be defined.
Angles assigned incorrectly
Angles read in from the data file were not assigned correctly to atoms. This means there is somethin
invalid about the topology definitions.
Angles defined but no angle types
The data file header lists angles but no angle types.

9.2 Reporting bugs 64

Another input script is already being processed
Cannot attempt to open a 2nd input script, when the original file is still being processed.
Atom IDs must be consecutive for dump dcd
Self-explanatory.
Atom IDs must be consecutive for dump xtc
Self-explanatory.
Atom IDs must be consecutive for dump xyz
Self-explanatory.
Atom count is inconsistent, cannot write restart file
Sum of atoms across processors does not equal initial total count. This is probably because you hav
lost some atoms.
Atom in too many rigid bodies — boost MAXBODY
Fix poems has a parameter MAXBODY (in fix_poems.cpp) which determines the maximum number
of rigid bodies a single atom can belong to (i.e. a multibody joint). The bodies you have defined
exceed this limit.
Atom style hybrid cannot have hybrid as an argument
Self-explanatory.
Atom style hybrid cannot use same atom style twice
Self-explanatory.
Atom_modify command after simulation box is defined
The atom_modify command cannot be used after a read_data, read_restart, or create_box comman
Atom_style command after simulation box is defined
The atom_style command cannot be used after a read_data, read_restart, or create_box command.
Attempting to rescale a 0.0 temperature
Cannot rescale a temperature that is already 0.0.
Bad FENE bond
Two atoms in a FENE bond have become so far apart that the bond cannot be computed.
Bad grid of processors
The 3d grid of processors defined by the processors command does not match the number of
processors LAMMPS is being run on.
Bad principal moments
Fix rigid did not compute the principal moments of inertia of a rigid group of atoms correctly.
Bad slab parameter
Kspace_modify value for the slab/volume keyword must be >= 2.0.
Bitmapped lookup tables require int/float be same size
Cannot use pair tables on this machine, because of word sizes. Use the pair_modify command with
table O instead.
Bitmapped table in file does not match requested table
Setting for bitmapped table in pair_coeff command must match table in file exactly.
Bitmapped table is incorrect length in table file
Number of table entries is not a correct power of 2.
Bond and angle potentials must be defined for TIP4P
Cannot use TIP4P pair potential unless bond and angle potentials are defined.
Bond atom missing in delete_bonds
The delete_bonds command cannot find one or more atoms in a particular bond on a particular
processor. The pairwise cutoff is too short or the atoms are too far apart to make a valid bond.
Bond atom missing in set command
The set command cannot find one or more atoms in a particular bond on a particular processor. The
pairwise cutoff is too short or the atoms are too far apart to make a valid bond.
Bond atoms %d %d missing on proc %d at step %d

9.2 Reporting bugs 65

One or more of 2 atoms needed to compute a particular bond are missing on this processor. Typicall
this is because the pairwise cutoff is set too short or the bond has blown apart and an atom is too far
away.
Bond coeff for hybrid has invalid style
Bond style hybrid uses another bond style as one of its coefficients. The bond style used in the
bond_coeff command or read from a restart file is not recognized.
Bond coeffs are not set
No bond coefficients have been assigned in the data file or via the bond_coeff command.
Bond potential must be defined for SHAKE
Cannot use fix shake unless bond potential is defined.
Bond style hybrid cannot have hybrid as an argument
Self-explanatory.
Bond style hybrid cannot use same bond style twice
The sub-style arguments of bond_style hybrid cannot be duplicated. Check the input script.
Bond style quartic cannot be used with 3,4-body interactions
No angle, dihedral, or improper styles can be defined when using bond style quartic.
Bond_coeff command before bond_style is defined
Coefficients cannot be set in the data file or via the bond_coeff command until an bond_style has
been assigned.
Bond_coeff command before simulation box is defined
The bond_coeff command cannot be used before a read_data, read_restart, or create_box comman
Bond_coeff command when no bonds allowed
The chosen atom style does not allow for bonds to be defined.
Bond_style command when no bonds allowed
The chosen atom style does not allow for bonds to be defined.
Bonds assigned incorrectly
Bonds read in from the data file were not assigned correctly to atoms. This means there is somethin
invalid about the topology definitions.
Bonds defined but no bond types
The data file header lists bonds but no bond types.
Both sides of boundary must be periodic
Cannot specify a boundary as periodic only on the lo or hi side. Must be periodic on both sides.
Boundary command after simulation box is defined
The boundary command cannot be used after a read_data, read_restart, or create_box command.
Box bounds are invalid
The box boundaries specified in the read_data file are invalid. The lo value must be less than the hi
value for all 3 dimensions.
Can only wiggle zcylinder wall in z dim
The Self-explanatory.
Cannot (yet) use PPPM with triclinic box
This feature is not yet supported.
Cannot (yet) use fix ave/spatial with triclinic box
This feature is not yet supported.
Cannot build parse tree for variable that is not atom style
Only atom style variables can be evaluated once per atom.
Cannot change dump_maodify every for dump dcd
The frequency of writing dump dcd snapshots cannot be changed.
Cannot compute PPPM G
LAMMPS failed to compute a valid approximation for the PPPM g_ewald factor that partitions the
computation between real space and k—space.
Cannot compute PPPM X grid spacing

9.2 Reporting bugs 66

LAMMPS failed to compute a valid PPPM grid spacing in the x dimension.
Cannot compute PPPM Y grid spacing
LAMMPS failed to compute a valid PPPM grid spacing in the y dimension.
Cannot compute PPPM Z grid spacing
LAMMPS failed to compute a valid PPPM grid spacing in the z dimension.
Cannot create an atom map unless atoms have IDs
The simulation requires a mapping from global atom IDs to local atoms, but the atoms that have bee
defined have no IDs.
Cannot create atoms with undefined lattice
Must use the lattice command before using the create_atoms command.
Cannot create_box after simulation box is defined
The create_box command cannot be used after a read_data, read_restart, or create_box command.
Cannot dump scaled coords with triclinic box
Use dump custom with x,y,z instead.
Cannot evaluate variable
Self-explanatory.
Cannot find delete_bonds group ID
Group ID used in the delete_bonds command does not exist.
Cannot fix deform on a non—periodic boundary
Only a periodiic boundary can be modified.
Cannot have both pair_maodify shift and tail set to yes
These 2 options are contradictory.
Cannot open EAM potential file %s
The specified EAM potential file cannot be opened. Check that the path and name are correct.
Cannot open MEAM potential file %s
The specified MEAM potential file cannot be opened. Check that the path and name are correct.
Cannot open Stillinger—-Weber potential file %s
The specified SW potential file cannot be opened. Check that the path and name are correct.
Cannot open Tersoff potential file %s
The specified Tersoff potential file cannot be opened. Check that the path and nhame are correct.
Cannot open dir to search for restart file
Using a "*" in the name of the restart file will open the current directory to search for matching file
names.
Cannot open dump file
The output file for the dump command cannot be opened. Check that the path and name are correct
Cannot open file %s
The specified file cannot be opened. Check that the path and name are correct.
Cannot open fix ave/spatial file %s
Self-explanatory.
Cannot open fix ave/time file %s
Self-explanatory.
Cannot open fix com file %s
The output file for the fix com command cannot be opened. Check that the path and name are corre«
Cannot open fix gran/diag file %s
The output file for the fix gran/diag command cannot be opened. Check that the path and name are
correct.
Cannot open fix gyration file %s
Self-explanatory.
Cannot open fix msd file %s
The output file for the fix msd command cannot be opened. Check that the path and name are corre
Cannot open fix poems file %s

9.2 Reporting bugs 67

The specified file cannot be opened. Check that the path and name are correct.
Cannot open fix rdf file %s
The output file for the fix rdf command cannot be opened. Check that the path and name are correct
Cannot open fix tmd file %s
The output file for the fix tmd command cannot be opened. Check that the path and name are correc
Cannot open gzipped file
LAMMPS is attempting to open a gzipped version of the specified file but was unsuccessful. Check
that the path and name are correct.
Cannot open input script %s
Self-explanatory.
Cannot open input script %s
Self-explanatory.
Cannot open log.lammps
The default LAMMPS log file cannot be opened. Check that the directory you are running in allows
for files to be created.
Cannot open logfile %s
The LAMMPS log file specified in the input script cannot be opened. Check that the path and name
are correct.
Cannot open logfile
The LAMMPS log file named in a command-line argument cannot be opened. Check that the path
and name are correct.
Cannot open pair_write file
The specified output file for pair energies and forces cannot be opened. Check that the path and nan
are correct.
Cannot open restart file %s
Self-explanatory.
Cannot open screen file
The screen file specified as a command-line argument cannot be opened. Check that the directory
are running in allows for files to be created.
Cannot open universe log file
For a multi-partition run, the master log file cannot be opened. Check that the directory you are
running in allows for files to be created.
Cannot open universe screen file
For a multi—partition run, the master screen file cannot be opened. Check that the directory you are
running in allows for files to be created.
Cannot read_data after simulation box is defined
The read_data command cannot be used after a read_data, read_restart, or create_box command.
Cannot read_restart after simulation box is defined
The read_restart command cannot be used after a read_data, read_restart, or create_box command
Cannot replicate 2d simulation in z dimension
The replicate command cannot replicate a 2d simulation in the z dimension.
Cannot replicate with fixes that store atom quantities
Either fixes are defined that create and store atom—based vectors or a restart file was read which
included atom-based vectors for fixes. The replicate command cannot duplicate that information for
new atoms. You should use the replicate command before fixes are applied to the system.
Cannot run 2d simulation with nonperiodic Z dimension
Use the boundary command to make the z dimension periodic in order to run a 2d simulation.
Cannot set both respa pair and inner/middle/outer
In the rRESPA integrator, you must compute pairwise potentials either all together (pair), or in piece:s
(inner/middle/outer). You can't do both.
Cannot set dipole for this atom style

9.2 Reporting bugs 68

This atom style does not support dipole settings for each atom type.
Cannot set dump_modify flush for dump xtc
Self-explanatory.
Cannot set mass for this atom style
This atom style does not support mass settings for each atom type. Instead they are defined on a
per—atom basis in the data file.
Cannot set respa middle without inner/outer
In the rRESPA integrator, you must define both a inner and outer setting in order to use a middle
setting.
Cannot set shape for this atom style
The atom style does not support this setting.
Cannot set this attribute for this atom style
The attribute being set does not exist for the defined atom style.
Cannot skew triclinic box in z for 2d simulation
Self-explanatory.
Cannot use Ewald with 2d simulation
The kspace style ewald cannot be used in 2d simulations. You can use 2d Ewald in a 3d simulation;
see the kspace_modify command.
Cannot use Ewald with triclinic box
This feature is not yet supported.
Cannot use PPPM with 2d simulation
The kspace style pppm cannot be used in 2d simulations. You can use 2d PPPM in a 3d simulation;
see the kspace_modify command.
Cannot use atom style ellipsoid for 2d simulation
2d ellipsoids are not yet suppported.
Cannot use atom vector in variable unless atom map exists
Atom maps are on by default, but can be turned off be the atom_modify command.
Cannot use delete_atoms unless atoms have IDs
Your atoms do not have IDs, so the delete_atoms command cannot be used.
Cannot use delete_bonds with non—-molecular system
Your choice of atom style does not have bonds.
Cannot use dump bond with non—-molecular system
Your choice of atom style does not have bonds.
Cannot use fix deform for 0 timestep run
Cannot reshape or resize the box in 0 timesteps.
Cannot use fix deform trate on a box with zero tilt
The trate style alters the current strain.
Cannot use fix nph on a non—periodic dimension
Only periodic dimensions can be controlled with this fix.
Cannot use fix nph with triclinic box
This feature is not yet supported.
Cannot use fix nph without per-type mass defined
The defined atom style uses per—atom mass, not per—type mass.
Cannot use fix npt on a non—periodic dimension
Only periodic dimensions can be controlled with this fix.
Cannot use fix npt with triclinic box
This feature is not yet supported.
Cannot use fix npt without per-type mass defined
The defined atom style uses per—atom mass, not per—-type mass.
Cannot use fix nvt without per-type mass defined
The defined atom style uses per—atom mass, not per—-type mass.

9.2 Reporting bugs 69

Cannot use fix poems with atom style granular
This fix is not yet enabled for this atom style.
Cannot use fix pour with triclinic box
This feature is not yet supported.
Cannot use fix shake with non—molecular system
Your choice of atom style does not have bonds.
Cannot use kspace solver on system with no charge
No atoms in system have a non-zero charge.
Cannot use nonperiodic boundaries with Ewald
For kspace style ewald, all 3 dimensions must have periodic boundaries unless you use the
kspace_modify command to define a 2d slab with a non—periodic z dimension.
Cannot use nonperiodic boundaries with PPPM
For kspace style pppm, All 3 dimensions must have periodic boundaries unless you use the
kspace_modify command to define a 2d slab with a non—periodic z dimension.
Cannot use pair tail corrections with 2d simulations
The correction factors are only currently defined for 3d systems.
Cannot use rRESPA with full neighbor lists
Defined pair style uses full neighbor lists (as opposed to half neighbor lists), which are incompatible
with the current implementation of rRESPA.
Cannot use region INF when box does not exist
Regions that extend to the box boundaries can only be used after the create_box command has bee
used.
Cannot use set atom with no atom IDs defined
Atom IDs are not defined, so they cannot be used to identify an atom.
Cannot use velocity create loop all unless atoms have IDs
Atoms in the simulation to do not have IDs, so this style of velocity creation cannot be performed.
Cannot use velocity create loop all with non—contiguous atom IDs
Atoms in the simulation to do not have consecutive IDs, so this style of velocity creation cannot be
performed.
Cannot use wall in periodic dimension
Self-explanatory.
Cannot zero momentum of 0 atoms
The collection of atoms for which momentum is being computed has no atoms.
Compute ID for fix ave/spatial does not exist
Self-explanatory.
Compute ID for fix ave/time does not exist
Self-explanatory.
Compute coord/atom cutoff is longer than pairwise cutoff
Cannot compute coordination at distances longer than the pair cutoff, since those atoms are not in tf
neighbor list.
Compute pressure must use group all
Self-explanatory.
Compute pressure temp ID does not compute temperature
The compute ID assigned to a pressure computation must compute temperature.
Compute rotate/dipole requires atom attributes dipole, omega
The atom style defined does not have these attributes.
Compute temp/asphere requires atom attributes quat, angmom
The atom style defined does not have these attributes.
Compute temp/dipole requires atom attributes omega, shape
The atom style defined does not have these attributes.
Could not create 3d FFT plan

9.2 Reporting bugs 70

The FFT setup in pppm failed.
Could not create 3d remap plan

The FFT setup in pppm failed.
Could not find compute ID to delete

Self-explanatory.
Could not find compute etotal/atom pre—compute ID

The compute ID for calculating per—atom pairwise energy does not exist.
Could not find compute group ID

Self-explanatory.
Could not find compute pressure temp 1D

The compute ID for calculating temperature does not exist.
Could not find compute variable name

The variable being used by a compute is not defined.
Could not find compute variable name

The variable name accessed by compute variable/atom does not exist.
Could not find compute_modify ID

Self-explanatory.
Could not find delete_atoms group ID

Group ID used in the delete_atoms command does not exist.
Could not find delete_atoms region ID

Region ID used in the delete_atoms command does not exist.
Could not find displace_atoms group ID

A group ID used in the displace_atoms command does not exist.
Could not find dump custom compute ID

The compute ID needed by dump custom to compute a per—atom quantity does not exist.
Could not find dump group ID

A group ID used in the dump command does not exist.
Could not find fix ID to delete

Self-explanatory.
Could not find fix group 1D

A group ID used in the fix command does not exist.
Could not find fix poems group ID

A group ID used in the fix poems command does not exist.
Could not find fix recenter group ID

A group ID used in the fix recenter command does not exist.
Could not find fix rigid group ID

A group ID used in the fix rigid command does not exist.
Could not find fix spring couple group ID

Self-explanatory.
Could not find fix_modify ID

A fix ID used in the fix_modify command does not exist.
Could not find fix_modify press ID

The compute ID for computing pressure does not exist.
Could not find fix_modify temp ID

The compute ID for computing temperature does not exist.
Could not find set group ID

Group ID specified in set command does not exist.
Could not find thermo compute ID

Compute ID specified in thermo_style command does not exist.
Could not find thermo custom compute ID

The compute ID needed by thermo style custom to compute a requested quantity does not exist.

9.2 Reporting bugs 71

Could not find thermo custom fix ID
The fix ID needed by thermo style custom to compute a requested quantity does not exist.
Could not find thermo custom variable 1D
The variable name needed by thermo style custom to compute a requested quantity does not exist.
Could not find thermo fix ID
Fix ID specified in thermo_style command does not exist.
Could not find thermo_modify drot ID
The compute ID needed by thermo style custom to compute rotational energy of dipolar atoms does
not exist.
Could not find thermo_modify grot ID
The compute ID needed by thermo style custom to compute rotational energy of granular atoms doe
not exist.
Could not find thermo_maodify press ID
The compute ID needed by thermo style custom to compute pressure does not exist.
Could not find thermo_maodify temp 1D
The compute ID needed by thermo style custom to compute temperature does not exist.
Could not find undump ID
A dump ID used in the undump command does not exist.
Could not find velocity group 1D
A group ID used in the velocity command does not exist.
Could not find velocity temp ID
The compute ID needed by the velocity command to compute temperature does not exist.
Could not pre-compute in variable
A compute required to evaulate a variable does not have its pre—compute defined.
Cound not find dump_maodify ID
Self-explanatory.
Create_atoms command before simulation box is defined
The create_atoms command cannot be used before a read_data, read_restart, or create_box comm
Create_atoms region ID does not exist
A region ID used in the create_atoms command does not exist.
Create_box region ID does not exist
A region ID used in the create_box command does not exist.
Create_box region must be of type inside
The region used in the create_box command must not be an "outside" region. See the region
command for detalils.
Cyclic loop in joint connections
Fix poems cannot (yet) work with coupled bodies whose joints connect the bodies in a ring (or cycle)
Degenerate lattice primitive vectors
Invalid set of 3 lattice vectors for lattice command.
Delete_atoms command before simulation box is defined
The delete_atoms command cannot be used before a read_data, read_restart, or create_box commi;
Delete_atoms cutoff > ghost cutoff
Cannot delete atoms further away than a processor knows about.
Delete_bonds command before simulation box is defined
The delete_bonds command cannot be used before a read_data, read_restart, or create_box comm;
Delete_bonds command with no atoms existing
No atoms are yet defined so the delete_bonds command cannot be used.
Did not assign all atoms correctly
Atoms read in from a data file were not assigned correctly to processors. This is likely due to some
atom coordinates being outside a non—periodic simulation box.
Did not find all elements in MEAM library file

9.2 Reporting bugs 72

The requested elements were not found in the MEAM file.
Did not find fix shake partner info
Could not find bond partners implied by fix shake command. This error can be triggered if the
delete_bonds command was used before fix shake, and it removed bonds without resetting the 1-2,
1-3, 1-4 weighting list via the special keyword.
Did not find keyword in table file
Keyword used in pair_coeff command was not found in table file.
Dihedral atom missing in delete_bonds
The delete_bonds command cannot find one or more atoms in a particular dihedral on a particular
processor. The pairwise cutoff is too short or the atoms are too far apart to make a valid dihedral.
Dihedral atom missing in set command
The set command cannot find one or more atoms in a particular dihedral on a particular processor.
The pairwise cutoff is too short or the atoms are too far apart to make a valid dihedral.
Dihedral atoms %d %d %d %d missing on proc %d at step %d
One or more of 4 atoms needed to compute a particular dihedral are missing on this processor.
Typically this is because the pairwise cutoff is set too short or the dihedral has blown apart and an
atom is too far away.
Dihedral charmm is incompatible with Pair style
Dihedral style charmm must be used with a pair style charmm in order for the 1-4 epsilon/sigma
parameters to be defined.
Dihedral coeff for hybrid has invalid style
Dihedral style hybrid uses another dihedral style as one of its coefficients. The dihedral style used in
the dihedral_coeff command or read from a restart file is not recognized.
Dihedral coeffs are not set
No dihedral coefficients have been assigned in the data file or via the dihedral_coeff command.
Dihedral style hybrid cannot have hybrid as an argument
Self-explanatory.
Dihedral style hybrid cannot use same dihedral style twice
Self-explanatory.
Dihedral_coeff command before dihedral_style is defined
Coefficients cannot be set in the data file or via the dihedral_coeff command until an dihedral_style
has been assigned.
Dihedral_coeff command before simulation box is defined
The dihedral_coeff command cannot be used before a read_data, read_restart, or create_box
command.
Dihedral_coeff command when no dihedrals allowed
The chosen atom style does not allow for dihedrals to be defined.
Dihedral_style command when no dihedrals allowed
The chosen atom style does not allow for dihedrals to be defined.
Dihedrals assigned incorrectly
Dihedrals read in from the data file were not assigned correctly to atoms. This means there is
something invalid about the topology definitions.
Dihedrals defined but no dihedral types
The data file header lists dihedrals but no dihedral types.
Dimension command after simulation box is defined
The dimension command cannot be used after a read_data, read_restart, or create_box command.
Dipole command before simulation box is defined
The dipole command cannot be used before a read_data, read_restart, or create_box command.
Displace_atoms command before simulation box is defined
The displace_atoms command cannot be used before a read_data, read_restart, or create_box
command.

9.2 Reporting bugs 73

Domain too large for neighbor bins
The domain has become extremely large so that neighbor bins cannot be used. Most likely, one or
more atoms have been blown out of the simulation box to a great distance.
Dump custom compute ID does not compute peratom info
The compute ID used must compute peratom info, not a global scalar or vector quantity.
Dump custom compute ID does not compute scalar per atom
The compute ID used must compute a single peratom datum.
Dump custom compute ID does not compute vector per atom
The compute ID used must compute a vector of peratom data.
Dump custom compute ID vector is not large enough
The compute ID vector of peratom data is nhot as large as is being accessed.
Dump dcd must use group all
Self-explanatory.
Dump dcd of non—matching # of atoms
Every snapshot written by dump dcd must contain the same # of atoms.
Dump xtc must use group all
Self-explanatory.
Dump xtc must use group all
Self-explanatory.
Dump_modify region ID does not exist
Self-explanatory.
Dumping an atom quantity that isn't allocated
The chosen atom style does not define the per—atom vector being dumped.
Failed to allocate %d bytes for array %s
Your LAMMPS simulation has run out of memory. You need to run a smaller simulation or on more
processors.
Failed to reallocate %d bytes for array %s
Your LAMMPS simulation has run out of memory. You need to run a smaller simulation or on more
processors.
Final box dimension due to fix deform is < 0.0
Self-explanatory.
Fix ave/spatial compute does not calculate per—atom info
Only computes that calculate a per—atom quantity (not a scalar or vector quantity can be used with fi
ave/spatial.
Fix ave/time compute does not calculate a scalar
Only computes that calculate a scalar or vector quantity (not a per—atom quantity) can be used with
fix ave/time.
Fix ave/time compute does not calculate a vector
Only computes that calculate a scalar or vector quantity (not a per—atom quantity) can be used with
fix ave/time.
Fix command before simulation box is defined
The fix command cannot be used before a read_data, read_restart, or create_box command.
Fix deform is changing yz by too much with changing xy
When both yz and xy are changing, it induces changes in xz if the box must flip from one tilt extreme
to another. Thus it is not allowed for yz to grow so much that a flip is induced.
Fix deform tilt factors require triclinic box
Cannot deform the tilt factors of a simulation box unless it is a triclinic (non—orthogonal) box.
Fix deform volume setting is invalid
Cannot use volume style unless other dimensions are being controlled.
Fix deposit region ID does not exist
Self-explanatory

9.2 Reporting bugs 74

Fix freeze requires atom attribute torque
The atom style defined does not have this attribute.
Fix gran/diag is incompatible with Pair style
Must use atom style granular.
Fix gran/diag requires atom attributes radius, rmass, omega
The atom style defined does not have these attributes.
Fix heat group has no atoms
Self-explanatory.
Fix langevin period must be > 0.0
The time window for temperature relaxation must be > 0
Fix langevin region ID does not exist
Self-explanatory.
Fix momentum group has no atoms
Self-explanatory.
Fix msd group has no atoms
Cannot compute diffusion for no atoms.
Fix nph periods must be > 0.0
The time window for pressure relaxation must be > 0
Fix npt periods must be > 0.0
The time window for temperature or pressure relaxation must be > 0
Fix nvt period must be > 0.0
The time window for temperature relaxation must be > 0
Fix orient/fcc file open failed
The fix orient/fcc command could not open a specified file.
Fix orient/fcc file read failed
The fix orient/fcc command could not read the needed parameters from a specified file.
Fix orient/fcc found self twice
The neighbor lists used by fix orient/fcc are messed up. If this error occurs, it is likely a bug, so send
an email to the developers.
Fix pour region ID does not exist
Self-explanatory.
Fix pour requires atom attributes radius, rmass
The atom style defined does not have these attributes.
Fix rdf requires a pair style be defined
Cannot use the rdf fix unless a pair style with a cutoff has been defined.
Fix recenter group has no atoms
Self-explanatory.
Fix shake cannot be used with minimization
Cannot use fix shake while doing an energy minimization since it turns off bonds that should
contribute to the energy.
Fix temp/rescale region ID does not exist
Self-explanatory.
Fix tmd must come after integration fixes
Any fix tmd command must appear in the input script after all time integration fixes (nve, nvt, npt).
See the fix tmd documentation for details.
Fix wall/gran is incompatible with Pair style
Must use a granular pair style to define the parameters needed for this fix.
Fix wall/gran requires atom attributes radius, omega, torque
The atom style defined does not have these attributes.
Fix_modify press ID does not compute pressure
The compute ID assigned to the fix must compute pressure.

9.2 Reporting bugs 75

http://lammps.sandia.gov/authors.html

Fix_modify temp ID does not compute temperature
The compute ID assigned to the fix must compute temperature.
Found no restart file matching pattern
When using a "*" in the restart file name, no matching file was found.
Granular pair styles do not use pair_coeff settings
The pair_coeff command cannot be used with granular force fields.
Gravity must point in —y to use with fix pour in 2d
Gravity must be pointing "down" in a 2d box.
Gravity must point in —z to use with fix pour in 3d
Gravity must be pointing "down" in a 3d box, i.e. theta = 180.0.
Group ID does not exist
A group ID used in the group command does not exist.
Group command before simulation box is defined
The group command cannot be used before a read_data, read_restart, or create_box command.
Group region ID does not exist
A region ID used in the group command does not exist.
lllegal ... command
** DELETE_POSSIBLE Self-explanatory. Check the input script syntax and compare to the
documentation for the command. You can use —echo screen as a command-line option when runnir
LAMMPS to see the offending line.
lllegal Stillinger—-Weber parameter
One or more of the coefficients defined in the potential file is invalid.
lllegal Tersoff parameter
One or more of the coefficients defined in the potential file is invalid.
lllegal fix heat attempt
The velocity rescaling about to be performed by fix heat is invalid.
lllegal simulation box
The lower bound of the simulation box is greater than the upper bound.
Improper atom missing in delete_bonds
The delete_bonds command cannot find one or more atoms in a particular improper on a particular
processor. The pairwise cutoff is too short or the atoms are too far apart to make a valid improper.
Improper atom missing in set command
The set command cannot find one or more atoms in a particular improper on a particular processor.
The pairwise cutoff is too short or the atoms are too far apart to make a valid improper.
Improper atoms %d %d %d %d missing on proc %d at step %d
One or more of 4 atoms needed to compute a particular improper are missing on this processor.
Typically this is because the pairwise cutoff is set too short or the improper has blown apart and an
atom is too far away.
Improper coeff for hybrid has invalid style
Improper style hybrid uses another improper style as one of its coefficients. The improper style used
in the improper_coeff command or read from a restart file is not recognized.
Improper coeffs are not set
No improper coefficients have been assigned in the data file or via the improper_coeff command.
Improper style hybrid cannot have hybrid as an argument
Self-explanatory.
Improper style hybrid cannot use same improper style twice
Self-explanatory.
Improper_coeff command before improper_style is defined
Coefficients cannot be set in the data file or via the improper_coeff command until an improper_style
has been assigned.
Improper_coeff command before simulation box is defined

9.2 Reporting bugs 76

The improper_coeff command cannot be used before a read_data, read_restart, or create_box
command.
Improper_coeff command when no impropers allowed
The chosen atom style does not allow for impropers to be defined.
Improper_style command when no impropers allowed
The chosen atom style does not allow for impropers to be defined.
Impropers assigned incorrectly
Impropers read in from the data file were not assigned correctly to atoms. This means there is
something invalid about the topology definitions.
Impropers defined but no improper types
The data file header lists improper but no improper types.
Incorrect args for angle coefficients
Self-explanatory. Check the input script or data file.
Incorrect args for bond coefficients
Self-explanatory. Check the input script or data file.
Incorrect args for dihedral coefficients
Self-explanatory. Check the input script or data file.
Incorrect args for improper coefficients
Self-explanatory. Check the input script or data file.
Incorrect args for pair coefficients
Self-explanatory. Check the input script or data file.
Incorrect args in pair_style command
Self-explanatory.
Incorrect atom format in data file
Number of values per atom line in the data file is not consistent with the atom style.
Incorrect boundaries with slab Ewald
Must have periodic x,y dimensions and non—periodic z dimension to use 2d slab option with Ewald.
Incorrect boundaries with slab PPPM
Must have periodic x,y dimensions and non—periodic z dimension to use 2d slab option with PPPM.
Incorrect element names in EAM potential file
The element names in the EAM file do not match those requested.
Incorrect format in MEAM potential file
Incorrect number of words per line in the potential file.
Incorrect format in Stillinger-Weber potential file
Incorrect number of words per line in the potential file.
Incorrect format in TMD target file
Format of file read by fix tmd command is incorrect.
Incorrect format in Tersoff potential file
Incorrect number of words per line in the potential file.
Incorrect multiplicity arg for dihedral coefficients
Self-explanatory. Check the input script or data file.
Incorrect sign arg for dihedral coefficients
Self-explanatory. Check the input script or data file.
Incorrect velocity format in data file
Each atom style defines a format for the Velocity section of the data file. The read-in lines do not
match.
Incorrect weight arg for dihedral coefficients
Self-explanatory. Check the input script or data file.
Input line too long after variable substitution
This is a hard (very large) limit defined in the input.cpp file.
Input line too long: %s

9.2 Reporting bugs 77

This is a hard (very large) limit defined in the input.cpp file.
Insertion region extends outside simulation box

Region specified with fix insert command extends outside the global simulation box.
Insufficient Jacobi rotations for POEMS body

Eigensolve for rigid body was not sufficiently accurate.
Insufficient Jacobi rotations for rigid body

Eigensolve for rigid body was not sufficiently accurate.
Invalid angle style

The choice of angle style is unknown.
Invalid angle type in Angles section of data file

Angle type must be positive integer and within range of specified angle types.
Invalid angle type index for fix shake

Self-explanatory.
Invalid atom ID in Angles section of data file

Atom IDs must be positive integers and within range of defined atoms.
Invalid atom ID in Atoms section of data file

Atom IDs must be positive integers.
Invalid atom ID in Bonds section of data file

Atom IDs must be positive integers and within range of defined atoms.
Invalid atom ID in Dihedrals section of data file

Atom IDs must be positive integers and within range of defined atoms.
Invalid atom ID in Impropers section of data file

Atom IDs must be positive integers and within range of defined atoms.
Invalid atom ID in Velocities section of data file

Atom IDs must be positive integers and within range of defined atoms.
Invalid atom mass for fix shake

Mass specified in fix shake command must be > 0.0.
Invalid atom style

The choice of atom style is unknown.
Invalid atom type in Atoms section of data file

Atom types must range from 1 to specified # of types.
Invalid atom type in create_atoms command

The create_box command specified the range of valid atom types. An invalid type is being requestec
Invalid atom type in neighbor exclusion list

Atom types must range from 1 to Ntypes inclusive.
Invalid atom type index for fix shake

Atom types must range from 1 to Ntypes inclusive.
Invalid atom types in fix rdf command

Atom types must range from 1 to Ntypes inclusive.
Invalid atom types in pair_write command

Atom types must range from 1 to Ntypes inclusive.
Invalid atom vector in variable

An atom vector specified in a variable definition is not recognized.
Invalid bond style

The choice of bond style is unknown.
Invalid bond type in Bonds section of data file

Bond type must be positive integer and within range of specified bond types.
Invalid bond type index for fix shake

Self-explanatory. Check the fix shake command in the input script.
Invalid coeffs for this angle style

Cannot set class 2 coeffs in data file for this angle style.

9.2 Reporting bugs 78

Invalid coeffs for this dihedral style
Cannot set class 2 coeffs in data file for this dihedral style.
Invalid coeffs for this improper style
Cannot set class 2 coeffs in data file for this improper style.
Invalid command-line argument
One or more command-line arguments is invalid. Check the syntax of the command you are using t«
launch LAMMPS.
Invalid compute ID in variable
A compute specified in a variable definition is not defined.
Invalid compute ID index in variable
The argument index of a compute specified in a variable definition is not valid.
Invalid compute style
Self-explanatory.
Invalid cutoffs in pair_write command
Inner cutoff must be larger than 0.0 and less than outer cutoff.
Invalid d1 or d2 value for pair colloid coeff
Neither d1 or d2 can be < 0.
Invalid data file section: Angle Coeffs
Atom style does not allow angles.
Invalid data file section: AngleAngle Coeffs
Atom style does not allow impropers.
Invalid data file section: AngleAngleTorsion Coeffs
Atom style does not allow dihedrals.
Invalid data file section: AngleTorsion Coeffs
Atom style does not allow dihedrals.
Invalid data file section: Angles
Atom style does not allow angles.
Invalid data file section: Bond Coeffs
Atom style does not allow bonds.
Invalid data file section: BondAngle Coeffs
Atom style does not allow angles.
Invalid data file section: BondBond Coeffs
Atom style does not allow angles.
Invalid data file section: BondBond13 Coeffs
Atom style does not allow dihedrals.
Invalid data file section: Bonds
Atom style does not allow bonds.
Invalid data file section: Dihedral Coeffs
Atom style does not allow dihedrals.
Invalid data file section: Dihedrals
Atom style does not allow dihedrals.
Invalid data file section: EndBondTorsion Coeffs
Atom style does not allow dihedrals.
Invalid data file section: Improper Coeffs
Atom style does not allow impropers.
Invalid data file section: Impropers
Atom style does not allow impropers.
Invalid data file section: MiddleBondTorsion Coeffs
Atom style does not allow dihedrals.
Invalid dihedral style
The choice of dihedral style is unknown.

9.2 Reporting bugs 79

Invalid dihedral type in Dihedrals section of data file
Dihedral type must be positive integer and within range of specified dihedral types.
Invalid dump dcd filename
Filenames used with the dump dcd style cannot be binary or compressed or cause multiple files to b
written.
Invalid dump frequency
Dumps frequency must be 1 or greater.
Invalid dump style
The choice of dump style is unknown.
Invalid dump xtc filename
Filenames used with the dump xtc style cannot be binary or compressed or cause multiple files to be
written.
Invalid dump xyz filename
Filenames used with the dump xyz style cannot be binary or cause files to be written by each
processor.
Invalid dump_maodify threshhold operator
Operator keyword used for threshhold specification in not recognized.
Invalid fix style
The choice of fix style is unknown.
Invalid flag in force field section of restart file
Unrecognized entry in restart file.
Invalid flag in header section of restart file
Unrecognized entry in restart file.
Invalid flag in type arrays section of restart file
Unrecognized entry in restart file.
Invalid group ID in neigh_modify command
A group ID used in the neigh_modify command does not exist.
Invalid improper style
The choice of improper style is unknown.
Invalid improper type in Impropers section of data file
Improper type must be positive integer and within range of specified improper types.
Invalid keyword in dump custom command
One or more attribute keywords are not recognized.
Invalid keyword in pair table parameters
Keyword used in list of table parameters is not recognized.
Invalid keyword in thermo_style custom command
One or more specified keywords are not recognized.
Invalid kspace style
The choice of kspace style is unknown.
Invalid mass line in data file
Self-explanatory.
Invalid math/group function in variable
Self-explanatory.
Invalid natoms for dump dcd
Natoms is initially O which is not valid for the dump dcd style. Natoms must be constant for the
duration of the simulation.
Invalid natoms for dump xtc
Natoms is initially O which is not valid for the dump xtc style.
Invalid natoms for dump xyz
Natoms is initially O which is not valid for the dump xyz style.
Invalid option in lattice command for non—custom style

9.2 Reporting bugs 80

Certain lattice keywords are not supported unless the lattice style is "custom".
Invalid order of forces within respa levels
For respa, ordering of force computations within respa levels must obey certain rules. E.g. bonds
cannot be compute less frequently than angles, pairwise forces cannot be computed less frequently
than kspace, etc.
Invalid pair style
The choice of pair style is unknown.
Invalid pair table cutoff
Cutoffs in pair_coeff command are not valid with read—in pair table.
Invalid pair table length
Length of read-in pair table is invalid
Invalid random number seed in set command
Random number seed must be > 0.
Invalid region style
The choice of region style is unknown.
Invalid seed for Park random # generator
The random number generator cannot be given a seed <= 0.
Invalid shape line in data file
Self-explanatory.
Invalid shape line in data file
Self-explanatory.
Invalid style in pair_write command
Self-explanatory. Check the input script.
Invalid thermo keyword in variable
Self-explanatory.
Invalid type for dipole set
Dipole command must set a type from 1-N where N is the number of atom types.
Invalid type for mass set
Mass command must set a type from 1-N where N is the number of atom types.
Invalid type for shape set
Atom type is out of bounds.
Invalid value in set command
The value specified for the setting is invalid, likely because it is too small or too large.
Invalid variable in next command
Next command in input script must set variables from "a" to "z".
Invalid variable name in variable
Self-explanatory.
Invalid variable name
Variable name used in an input script line is invalid.
Invalid variable style with next command
Variable styles equal and world cannot be used in a next command.
Invoked pair single on pair style none
A command (e.g. a dump) attempted to invoke the single() function on a pair style none, which is
illegal. You are probably attempting to compute per—atom quantities with an undefined pair style.
KSpace style has not yet been set
Cannot use kspace_modify command until a kspace style is set.
KSpace style is incompatible with Pair style
Setting a kspace style requires that a pair style with a long—range Coulombic component be selectec
Keyword %s in MEAM parameter file not recognized
Self-explanatory.
Kspace style requires atom attribute g

9.2 Reporting bugs 81

The atom style defined does not have these attributes.
Label wasn't found in input script
Self-explanatory.
Lattice orient vectors are not orthogonal
The three specified lattice orientation vectors must be mutually orthogonal.
Lattice orient vectors are not right-handed
The three specified lattice orientation vectors must create a right—handed coordinate system such th
al cross a2 = a3.
Lattice primitive vectors are colinear
The specified lattice primitive vectors do not for a unit cell with non-zero volume.
Lattice settings are not compatible with 2d simulation
One or more of the specified lattice vectors has a non-zero z component.
Lattice spacings are invalid
Each x,y,z spacing must be > 0.
Lattice style incompatible with simulation dimension
2d simulation can use sq, sg2, or hex lattice. 3d simulation can use sc, bcc, or fcc lattice.
Lost atoms via displacement: original %.15g current %.15g
Moving atoms via the displace_atoms command lost one or more atoms.
Lost atoms: original %.15¢g current %.15¢g
A thermodynamic computation has detected lost atoms.
MEAM library error %d
A call to the MEAM Fortran library returned an error.
Marsaglia RNG cannot use 0 seed
The random number generator use for the fix langevin command cannot use 0 as an initial seed.
Mass command before simulation box is defined
The mass command cannot be used before a read_data, read_restart, or create_box command.
Min_style command before simulation box is defined
The min_style command cannot be used before a read_data, read_restart, or create_box command.
Minimize command before simulation box is defined
The minimize command cannot be used before a read_data, read_restart, or create_box command.
More than one fix deform
Only one fix deform can be defined at a time.
More than one fix freeze
Only one of these fixes can be defined, since the granular pair potentials access it.
More than one fix shake
Only one fix shake can be defined.
Must define angle_style before Angle Coeffs
Must use an angle_style command before reading a data file that defines Angle Coeffs.
Must define angle_style before BondAngle Coeffs
Must use an angle_style command before reading a data file that defines Angle Coeffs.
Must define angle_style before BondBond Coeffs
Must use an angle_style command before reading a data file that defines Angle Coeffs.
Must define bond_style before Bond Coeffs
Must use a bond_style command before reading a data file that defines Bond Coeffs.
Must define dihedral_style before AngleAngleTorsion Coeffs
Must use a dihedral_style command before reading a data file that defines AngleAngleTorsion Coeff
Must define dihedral_style before AngleTorsion Coeffs
Must use a dihedral_style command before reading a data file that defines AngleTorsion Coeffs.
Must define dihedral_style before BondBond13 Coeffs
Must use a dihedral_style command before reading a data file that defines BondBond13 Coeffs.
Must define dihedral_style before Dihedral Coeffs

9.2 Reporting bugs 82

Must use a dihedral_style command before reading a data file that defines Dihedral Coeffs.
Must define dihedral_style before EndBondTorsion Coeffs
Must use a dihedral_style command before reading a data file that defines EndBondTorsion Coeffs.
Must define dihedral_style before MiddleBondTorsion Coeffs
Must use a dihedral_style command before reading a data file that defines MiddleBondTorsion
Coeffs.
Must define improper_style before AngleAngle Coeffs
Must use an improper_style command before reading a data file that defines AngleAngle Coeffs.
Must define improper_style before Improper Coeffs
Must use an improper_style command before reading a data file that defines Improper Coeffs.
Must define pair_style before Pair Coeffs
Must use a pair_style command before reading a data file that defines Pair Coeffs.
Must have more than one processor partition to temper
Cannot use the temper command with only one processor partition. Use the —partition command-lins
option.
Must read Atoms before Angles
The Atoms section of a data file must come before an Angles section.
Must read Atoms before Bonds
The Atoms section of a data file must come before a Bonds section.
Must read Atoms before Dihedrals
The Atoms section of a data file must come before a Dihedrals section.
Must read Atoms before Impropers
The Atoms section of a data file must come before an Impropers section.
Must read Atoms before Velocities
The Atoms section of a data file must come before a Velocities section.
Must set both respa inner and outer
Cannot use just the inner or outer option with respa without using the other.
Must specify a region in fix deposit
The region keyword must be specified with this fix.
Must specify a region in fix pour
The region keyword must be specified with this fix.
Must use —in switch with multiple partitions
A multi—partition simulation cannot read the input script from stdin. The —in command-line option
must be used to specify a file.
Must use a block or cylinder region with fix pour
Self-explanatory.
Must use a block region with fix pour for 2d simulations
Self-explanatory.
Must use a molecular atom style with fix poems molecule
Self-explanatory.
Must use a molecular atom style with fix rigid molecule
Self-explanatory.
Must use a z—axis cylinder with fix pour
The axis of the cylinder region used with the fix insert command must be oriented along the z
dimension.
Must use charged atom style with fix efield
The atom style being used does not allow atoms to have assigned charges. Hence it will not work wi
this fix which generates a force due to an E-field acting on charge.
Must use fix gravity with fix pour
Insertion of granular particles must be done under the influence of gravity.
Must use molecular atom style with neigh_maodify exclude molecule

9.2 Reporting bugs 83

The atom style must define a molecule ID to use the exclude option.
Must use region with side = in with fix deposit
Self-explanatory
Must use region with side = in with fix pour
Self-explanatory.
Must use special bonds = 1,1,1 with bond style quartic
The settings for the special_bonds command must be set as indicated when using bond style quartic
Needed topology not in data file
The header of the data file indicated that bonds or angles or dihedrals or impropers would be include
but they were not present.
Neighbor delay must be 0 or multiple of every setting
The delay and every parameters set via the neigh_modify command are inconsistent. If the delay
setting is non-zero, then it must be a multiple of the every setting.
Neighbor list overflow, boost neigh_modify one or page
There are too many neighbors of a single atom. Use the neigh_modify command to increase the
neighbor page size and the max number of neighbors allowed for one atom.
Neighbor multi not allowed with granular
Self-explanatory.
Neighbor multi not allowed with rRESPA
Self-explanatory.
Newton bond change after simulation box is defined
The newton command cannot be used to change the newton bond value after a read_data, read_res
or create_box command.
No angles allowed with this atom style
Self-explanatory. Check data file.
No atoms in data file
The header of the data file indicated that atoms would be included, but they were not present.
No basis atoms in lattice
Basis atoms must be defined for lattice style user.
No bonds allowed with this atom style
Self-explanatory. Check data file.
No dihedrals allowed with this atom style
Self-explanatory. Check data file.
No dump custom arguments specified
The dump custom command requires that atom quantities be specified to output to dump file.
No impropers allowed with this atom style
Self-explanatory. Check data file.
No matching element in EAM potential file
The EAM potential file does not contain elements that match the requested elements.
No rigid bodies defined
The fix specification did not end up defining any rigid bodies.
Non integer # of swaps in temper command
Swap frequency in temper command must evenly divide the total # of timesteps.
One or more atoms belong to multiple rigid bodies
Two or more rigid bodies defined by the fix rigid command cannot contain the same atom.
One or zero atoms in rigid body
Any rigid body defined by the fix rigid command must contain 2 or more atoms.
Out of range atoms — cannot compute PPPM
One or more atoms are attempting to map their charge to a PPPM grid point that is not owned by a
processor. This is usually because an atom has moved to far in a single timestep.
POEMS fix must come before NPT/NPH fix

9.2 Reporting bugs 84

NPT/NPH fix must be defined in input script after all poems fixes, else the fix contribution to the
pressure virial is incorrect.
PPPM grid is too large
The global PPPM grid is larger than OFFSET in one or more dimensions. OFFSET is currently set tc
4096. You likely need to decrease the requested precision.
PPPM order cannot be greater than %d
Self-explanatory.
PPPM stencil extends too far, reduce PPPM order
The grid points that atom charge are mapped to cannot extend further than one neighbor processor
away. Reducing the PPPM order via the kspace_modify command will reduce the stencil distance.
Pair coeff for hybrid has invalid style
Style in pair coeff must have been listed in pair_style command.
Pair cutoff < Respa interior cutoff
One or more pairwise cutoffs are too short to use with the specified rRESPA cutoffs.
Pair distance < table inner cutoff
Two atoms are closer together than the pairwise table allows.
Pair distance > table outer cutoff
Two atoms are further apart than the pairwise table allows.
Pair gayberne epsilon a,b,c coeffs are not all set
Each atom type involved in pair_style gayberne must have these 3 coefficients set at least once.
Pair gayberne requires atom attributes quat, torque
The atom style defined does not have these attributes.
Pair granular requires atom attributes radius, omega, torque
The atom style defined does not have these attributes.
Pair inner cutoff < Respa interior cutoff
One or more pairwise cutoffs are too short to use with the specified rRESPA cutoffs.
Pair inner cutoff >= Pair outer cutoff
The specified cutoffs for the pair style are inconsistent.
Pair style MEAM requires newton pair on
See the newton command. This is a restriction to use the MEAM potential.
Pair style Stillinger—Weber requires atom IDs
This is a requirement to use the SW potential.
Pair style Stillinger—Weber requires newton pair on
See the newton command. This is a restriction to use the SW potential.
Pair style Tersoff requires atom IDs
This is a requirement to use the Tersoff potential.
Pair style Tersoff requires newton pair on
See the newton command. This is a restriction to use the Tersoff potential.
Pair style buck/coul/cut requires atom attribute g
The atom style defined does not have this attribute.
Pair style buck/coul/long requires atom attribute g
The atom style defined does not have these attributes.
Pair style does not support bond_style quartic
The pair style does not have a single() function, so it can not be invoked by bond_style quatrtic.
Pair style does not support computing per—atom energy
The pair style does not have a single() function, so it can not be used to dump per—atom energy.
Pair style does not support computing per—atom stress
The pair style does not have a single() function, so it can not be used to dump per—atom stress.
Pair style does not support pair_write
The pair style does not have a single() function, so it can not be invoked by the pair_write command.
Pair style does not support rRESPA inner/middle/outer

9.2 Reporting bugs 85

You are attempting to use rRESPA options with a pair style that does not support them.
Pair style dpd requires atom style dpd
Must use atom_style dpd or atom_style hybrid with dpd as a sub—style in order to use this pair style.
Pair style granular with history requires atoms have IDs
Atoms in the simulation do not have IDs, so history effects cannot be tracked by the granular pair
potential.
Pair style hybrid cannot have hybrid as an argument
Self-explanatory.
Pair style hybrid cannot use same pair style twice
The sub-style arguments of pair_style hybrid cannot be duplicated. Check the input script.
Pair style is incompatible with KSpace style
If a pair style with a long-range Coulombic component is selected, then a kspace style must also be
used.
Pair style lj/charmm/coul/charmm requires atom attribute g
The atom style defined does not have these attributes.
Pair style lj/charmm/coul/long requires atom attribute g
The atom style defined does not have these attributes.
Pair style lj/class2/coul/cut requires atom attribute q
The atom style defined does not have this attribute.
Pair style lj/class2/coul/long requires atom attribute q
The atom style defined does not have this attribute.
Pair style lj/cut/coul/cut requires atom attribute q
The atom style defined does not have this attribute.
Pair style lj/cut/coul/long requires atom attribute g
The atom style defined does not have this attribute.
Pair style lj/cut/coul/long/tip4p requires atom IDs
There are no atom IDs defined in the system and the TIP4P potential requires them to find O,H atom
with a water molecule.
Pair style lj/cut/coul/long/tip4p requires atom attribute q
The atom style defined does not have these attributes.
Pair style lj/cut/coul/long/tip4p requires newton pair on
This is because the computation of constraint forces within a water molecule adds forces to atoms
owned by other processors.
Pair table cutoffs must all be equal to use with KSpace
When using pair style table with a long—-range KSpace solver, the cutoffs for all atom type pairs must
all be the same, since the long-range solver starts at that cutoff.
Pair table parameters did not set N
List of pair table parameters must include N setting.
Pair_coeff command before pair_style is defined
Self-explanatory.
Pair_coeff command before simulation box is defined
The pair_coeff command cannot be used before a read_data, read_restart, or create_box command
Pair_modify command before pair_style is defined
Self-explanatory.
Pair_style granular command before simulation box is defined
This pair style cannot be used before a simulation box is defined.
Pair_write command before pair_style is defined
Self-explanatory.
Potential file has duplicate entry
The potential file for a SW or Tersoff potential has more than one entry for the same 3 ordered
elements.

9.2 Reporting bugs 86

Potential file is missing an entry
The potential file for a SW or Tersoff potential does not have a needed entry.
Potential with shear history requires newton pair off
Granular potentials that include shear history effects can only be run with a newton setting where
pairwise newton is "off".
Precompute ID for fix ave/spatial does not exist
The compute used by fix ave/spatial requires a second pre—computation compute, which isn't define
Precompute ID for fix ave/time does not exist
The compute used by fix ave/time requires a second pre—computation compute, which isn't defined.
Press ID for fix nph does not exist
The compute ID needed to compute pressure for the fix does not exist.
Press ID for fix npt does not exist
The compute ID needed to compute pressure for the fix does not exist.
Press ID for thermo does not exist
The compute ID needed to compute pressure for thermodynamics does not exist.
Proc grid in z I= 1 for 2d simulation
There cannot be more than 1 processor in the z dimension of a 2d simulation.
Processor partitions are inconsistent
The total number of processors in all partitions must match the number of processors LAMMPS is
running on.
Processors command after simulation box is defined
The processors command cannot be used after a read_data, read_restart, or create_box command.
Quaternion creation numeric error
A numeric error occurred in the creation of a rigid body by the fix rigid command.
Quotes in a single arg
A single word should not be quoted in the input script; only a set of words with intervening spaces
should be quoted.
RO < 0 for fix spring command
Equilibrium spring length is invalid.
Region intersect region ID does not exist
Self-explanatory.
Region union region ID does not exist
One or more of the region IDs specified by the region union command does not exist.
Replacing a fix, but new style != old style
A fix ID can be used a 2nd time, but only if the style matches the previous fix. In this case it is
assumed you with to reset a fix's parameters. This error may mean you are mistakenly re—using a fix
ID when you do not intend to.
Replicate command before simulation box is defined
The replicate command cannot be used before a read_data, read_restart, or create_box command.
Replicate did not assign all atoms correctly
Atoms replicated by the replicate command were not assigned correctly to processors. This is likely
due to some atom coordinates being outside a non—periodic simulation box.
Respa inner cutoffs are invalid
The first cutoff must be <= the second cutoff.
Respa levels must be >= 1
Self-explanatory.
Respa middle cutoffs are invalid
The first cutoff must be <= the second cutoff.
Reuse of compute ID
A compute ID cannot be used twice.
Reuse of dump ID

9.2 Reporting bugs 87

A dump ID cannot be used twice.
Reuse of region ID
A region ID cannot be used twice.
Rigid body has degenerate moment of inertia
Fix poems will only work with bodies (collections of atoms) that have non-zero principal moments of
inertia. This means they must be 3 or more non—colinear atoms, even with joint atoms removed.
Rigid fix must come before NPT/NPH fix
NPT/NPH fix must be defined in input script after all rigid fixes, else the rigid fix contribution to the
pressure virial is incorrect.
Run command before simulation box is defined
The run command cannot be used before a read_data, read_restart, or create_box command.
Run command start value is after start of run
Self-explanatory.
Run command stop value is before end of run
Self-explanatory.
Run command upto value is before current timestep
Self-explanatory.
Run_style command before simulation box is defined
The run_style command cannot be used before a read_data, read_restart, or create_box command.
Set command before simulation box is defined
The set command cannot be used before a read_data, read_restart, or create_box command.
Set command with no atoms existing
No atoms are yet defined so the set command cannot be used.
Set region ID does not exist
Region ID specified in set command does not exist.
Shake angles have different bond types
All 3—atom angle—constrained SHAKE clusters specified by the fix shake command that are the sam
angle type, must also have the same bond types for the 2 bonds in the angle.
Shake atoms %d %d %d %d missing on proc %d at step %d
The 4 atoms in a single shake cluster specified by the fix shake command are not all accessible to a
processor. This probably means an atom has moved too far.
Shake atoms %d %d %d missing on proc %d at step %d
The 3 atoms in a single shake cluster specified by the fix shake command are not all accessible to a
processor. This probably means an atom has moved too far.
Shake atoms %d %d missing on proc %d at step %d
The 2 atoms in a single shake cluster specified by the fix shake command are not all accessible to a
processor. This probably means an atom has moved too far.
Shake cluster of more than 4 atoms
A single cluster specified by the fix shake command can have no more than 4 atoms.
Shake clusters are connected
A single cluster specified by the fix shake command must have a single central atom with up to 3
other atoms bonded to it.
Shake determinant = 0.0
The determinant of the matrix being solved for a single cluster specified by the fix shake command is
numerically invalid.
Shake fix must come before NPT/NPH fix
NPT fix must be defined in input script after SHAKE fix, else the SHAKE fix contribution to the
pressure virial is incorrect.
Shape command before simulation box is defined
Self-explanatory.
Substitution for undefined variable

9.2 Reporting bugs 88

The variable specified with a $ symbol in an input script command has not been previously defined
with a variable command.
TIP4P hydrogen has incorrect atom type
The TIP4P pairwise computation found an H atom whose type does not agree with the specified H
type.
TIP4P hydrogen is missing
The TIP4P pairwise computation failed to find the correct H atom within a water molecule.
TMD target file did not list all group atoms
The target file for the fix tmd command did not list all atoms in the fix group.
Target T for fix npt cannot be 0.0
Self-explanatory.
Target T for fix nvt cannot be 0.0
Self-explanatory.
Temp ID for fix nph does not exist
The compute ID needed to compute temperature for the fix does not exist.
Temp ID for fix npt does not exist
The compute ID needed to compute temperature for the fix does not exist.
Temp ID for fix nvt does not exist
The compute ID needed to compute temperature for the fix does not exist.
Temp ID for fix temp/rescale does not exist
The compute ID needed to compute temperature for the fix does not exist.
Temp ID of press ID for fix nph does not exist
The compute ID needed to compute temperature within the pressure compute ID for the fix does not
exist.
Temp ID of press ID for fix npt does not exist
The compute ID needed to compute temperature within the pressure compute ID for the fix does not
exist.
Temper command before simulation box is defined
The temper command cannot be used before a read_data, read_restart, or create_box command.
Temperature region ID does not exist
The region ID specified in the temperature command does not exist.
Tempering fix ID is not defined
The fix ID specified by the temper command does not exist.
Tempering fix is not valid
The fix specified by the temper command is not one that controls temperature (nvt or langevin).
Thermo compute ID does not compute scalar info
The specified compute ID does not compute a scalar quantity as requested.
Thermo compute ID does not compute vector info
The specified compute ID does not compute a vector quantity as requested.
Thermo compute ID vector is not large enough
The specified compute ID does not compute a large enough vector quantity for the requested index.
Thermo style does not use drot
Cannot use thermo_maodify to set this parameter since the thermo_style is hot computing this quantit
Thermo style does not use grot
Cannot use thermo_maodify to set this parameter since the thermo_style is hot computing this quantit
Thermo style does not use press
Cannot use thermo_maodify to set this parameter since the thermo_style is hot computing this quantit
Thermo style does not use temp
Cannot use thermo_maodify to set this parameter since the thermo_style is hot computing this quantit
Thermo_modify press ID does not compute pressure
The specified compute ID does not compute pressure.

9.2 Reporting bugs 89

Thermo_modify temp ID does not compute temperature
The specified compute ID does not compute temperature.
Thermo_style command before simulation box is defined
The thermo_style command cannot be used before a read_data, read_restart, or create_box commsa
Thermodynamics must compute PE for temper
The thermo style must insure that thermodynamics computations include potential energy when
tempering is performed.
Thermodynamics not computed on tempering swap steps
The thermo command must insure that thermodynamics (including energy) is computed on the
timesteps that tempering swaps are attempted.
Timestep must be >=0
Specified timestep size is invalid.
Too big a problem to replicate with molecular atom style
Molecular problems cannot become bigger than 2231 atoms (or bonds, etc) when replicated, else the
atom IDs and other quantities cannot be stored in 32 bit quantities.
Too few bits for lookup table
Table size specified via pair_modify command does not work with your machine's floating point
representation.
Too many exponent bits for lookup table
Table size specified via pair_modify command does not work with your machine's floating point
representation.
Too many groups
The maximum number of atom groups (including the "all" group) is given by MAX_GROUP in
group.cpp and is 32.
Too many mantissa bits for lookup table
Table size specified via pair_modify command does not work with your machine's floating point
representation.
Too many masses for fix shake
The fix shake command cannot list more masses than there are atom types.
Too many total bits for bitmapped lookup table
Table size specified via pair_modify command is too large. Note that a value of N generates a 2N
size table.
Too many touching neighbors — boost MAXTOUCH
A granular simulation has too many neighbors touching one atom. The MAXTOUCH parameter in
fix_shear_history.cpp must be set larger and LAMMPS must be re-built.
Tree structure in joint connections
Fix poems cannot (yet) work with coupled bodies whose joints connect the bodies in a tree structure
Triclinic box must be periodic in skewed dimensions
This is a requirement for using a non-orthogonal box. E.g. to set a non-zero xy tilt, both x and y mus
be periodic dimensions.
Triclinic box skew is too large
The displacement in a skewed direction must be less than half the box length in that dimension. E.g.
the xy tilt must be between —half and +half of the x box length.
Unbalanced quotes in input line
No matching end double quote was found following a leading double quote.
Unexpected end of data file
LAMMPS hit the end of the data file while attempting to read a section. Something is wrong with the
format of the data file.
Units command after simulation box is defined
The units command cannot be used after a read_data, read_restart, or create_box command.
Universe/uloop variable count < # of partitions

9.2 Reporting bugs 90

A universe or uloop style variable must specify a number of values >= to the number of processor
partitions.
Unknown command: %s
The command is not known to LAMMPS. Check the input script.
Unknown identifier in data file: %s
A section of the data file cannot be read by LAMMPS.
Unknown section in data file: %s
The keyword for a section of the data file is not recognized by LAMMPS.
Unknown table style in pair_style command
Style of table is invalid for use with pair_style table command.
Unrecognized lattice type in MEAM file 1
The lattice type in an entry of the MEAM library file is not valid.
Unrecognized lattice type in MEAM file 2
The lattice type in an entry of the MEAM parameter file is not valid.
Use of compute temp/ramp with undefined lattice
Must use lattice command with compute temp/ramp command if units option is set to lattice.
Use of displace_atoms with undefined lattice
Must use lattice command with displace_atoms command if units option is set to lattice.
Use of fix ave/spatial with undefined lattice
A lattice must be defined to use fix ave/spatial with units = lattice.
Use of fix deform with undefined lattice
A lattice must be defined to use fix deform with units = lattice.
Use of fix deposit with undefined lattice
Must use lattice command with compute fix deposit command if units option is set to lattice.
Use of fix indent with undefined lattice
The lattice command must be used to define a lattice before using the fix indent command.
Use of fix recenter with undefined lattice
Must use lattice command with fix recenter command if units option is set to lattice.
Use of region with undefined lattice
If scale = lattice (the default) for the region command, then a lattice must first be defined via the
lattice command.
Use of velocity with undefined lattice
If scale = lattice (the default) for the velocity set or velocity ramp command, then a lattice must first
be defined via the lattice command.
Using fix nvt/sllod with inconsistent fix deform remap option
Fix nvt/sllod requires that deforming atoms have a velocity profile provided by "remap v" as a fix
deform option.
Using fix nvt/sllod with no fix deform defined
Self-explanatory.
Variable compute ID does not compute scalar info
The specified compute ID does not compute a scalar quantity as requested.
Variable compute ID vector is not large enough
The specified compute ID does not compute a large enough vector quantity for the requested index.
Variable equal keyword used before initial run
Cannot evaluate the variable at this stage of input script.
Variable equal keyword used before simulation box defined
Cannot evaluate the variable at this stage of input script.
Variable group ID does not exist
A group specified in a variable definition does not exist.
Velocity command before simulation box is defined
The velocity command cannot be used before a read_data, read_restart, or create_box command.

9.2 Reporting bugs 91

Velocity command with no atoms existing

A velocity command has been used, but no atoms yet exist.
Velocity ramp in z for a 2d problem

Self-explanatory.
Velocity temp ID does not compute temperature

The compute ID given to the velocity command must compute temperature.
World variable count doesn't match # of partitions

A world-style variable must specify a number of values equal to the number of processor partitions.
Write_restart command before simulation box is defined

The write_restart command cannot be used before a read_data, read_restart, or create_box comma
Zero—length lattice orient vector

Self-explanatory.

Warnings:

FENE bond too long: %d %d %d %g
A FENE bond has stretched dangerously far. It's interaction strength will be truncated to attempt to
prevent the bond from blowing up.
FENE bond too long: %d %g
A FENE bond has stretched dangerously far. It's interaction strength will be truncated to attempt to
prevent the bond from blowing up.
Fix recenter should come after all other integration fixes
Other fixes may change the position of the center-of-mass, so fix recenter should come last.
Fix wall/reflect should come after all other integration fixes
This is because other integration fixes may alter the coordinates of an atom, so you want to reflect it
back into the box only after the other fixes have made their adjustments.
Group for fix_modify temp != fix group
The fix_modify command is specifying a temperature computation that computes a temperature on &
different group of atoms than the fix itself operates on. This is probably not what you want to do.
Less insertions than requested
Less atom insertions occurred on this timestep due to the fix insert command than were scheduled.
This is probably because there were too many overlaps detected.
Lost atoms: original %.15¢g current %.15¢g
A thermodynamic computation has detected lost atoms.
Mismatch between velocity and compute groups
The temperature computation used by the velocity command will not be on the same group of atoms
that velocities are being set for.
More than one compute centro/atom
It is not efficient to use compute centro/atom more than once.
More than one compute coord/atom
It is not efficient to use compute coord/atom more than once.
More than one compute epair/atom
It is not efficient to use compute epair/atom more than once.
More than one compute etotal/atom
It is not efficient to use compute etotal/atom more than once.
More than one compute ke/atom
It is not efficient to use compute ke/atom more than once.
More than one compute stress/atom
It is not efficient to use compute stress/atom more than once.
More than one fix msd
It is not efficient to use fix msd more than once.

Warnings: 92

More than one fix poems
It is not efficient to use fix poems more than once.
More than one fix rigid
It is not efficient to use fix rigid more than once.
No fixes defined, atoms won't move
If you are not using a fix like nve, nvt, npt then atom velocities and coordinates will not be updated
during timestepping.
No joints between rigid bodies, use fix rigid instead
The bodies defined by fix poems are not connected by joints. POEMS will integrate the body motion,
but it would be more efficient to use fix rigid.
One or more respa levels compute no forces
This is computationally inefficient.
Particle deposition was unsuccessful
The fix deposit command was not able to insert as many atoms as needed. The requested volume
fraction may be too high, or other atoms may be in the insertion region.
Replacing a fix, but new group != old group
The ID and style of a fix match for a fix you are changing with a fix command, but the new group you
are specifying does not match the old group.
Replicating in a non—periodic dimension
The parameters for a replicate command will cause a non-periodic dimension to be replicated; this
may cause unwanted behavior.
Resetting angle_style to restart file value
The angle style defined in the LAMMPS input script does not match that of the restart file.
Resetting bond_style to restart file value
The bond style defined in the LAMMPS input script does not match that of the restart file.
Resetting boundary settings to restart file values
The boundary settings defined in the LAMMPS input script do not match that of the restart file.
Resetting dihedral_style to restart file value
The dihedral style defined in the LAMMPS input script does not match that of the restart file.
Resetting dimension to restart file value
The dimension value defined in the LAMMPS input script does not match that of the restart file.
Resetting improper_style to restart file value
The improper style defined in the LAMMPS input script does not match that of the restart file.
Resetting newton bond to restart file value
The value of the newton setting for bonds defined in the LAMMPS input script does not match that of
the restart file.
Resetting pair_style to restart file value
The pair style defined in the LAMMPS input script does not match that of the restart file.
Resetting reneighboring criteria during minimization
Minimization requires that neigh_maodify settings be delay = 0, every = 1, check = yes. Since these
settings were not in place, LAMMPS changed them and will restore them to their original values aftel
the minimization.
Resetting unit_style to restart file value
The unit style defined in the LAMMPS input script does not match that of the restart file.
Restart file used different # of processors
The restart file was written out by a LAMMPS simulation running on a different number of
processors. Due to round-off, the trajectories of your restarted simulation may diverge a little more
quickly than if you ran on the same # of processors.
Restart file used different 3d processor grid
The restart file was written out by a LAMMPS simulation running on a different 3d grid of
processors. Due to round-off, the trajectories of your restarted simulation may diverge a little more

Warnings: 93

quickly than if you ran on the same # of processors.

Restart file used different newton pair setting
The restart file was written out by a LAMMPS simulation running with a different value of the
newton pair setting. The new simulation will use the value from the input script.

Restart file version does not match LAMMPS version
The version of LAMMPS that wrote the restart file does not match the version of LAMMPS that is
reading the restart file. Generally this shouldn't be a problem, since restart file formats won't change
very often if at all. But if they do, the code will probably crash trying to read the file. Versions of
LAMMPS are specified by a date.

Shake determinant < 0.0
The determinant of the quadratic equation being solved for a single cluster specified by the fix shake
command is numerically suspect. LAMMPS will set it to 0.0 and continue.

Slab parameter < 2.0 may cause unphysical behavior
The kspace_modify slab parameter should be larger to insure periodic grids padded with empty spac
do not overlap.

System is not charge neutral, net charge = %g
The total charge on all atoms on the system is not 0.0, which is not valid for Ewald or PPPM.

Table inner cutoff >= outer cutoff
You specified an inner cutoff for a Coulombic table that is longer than the global cutoff. Probably not
what you wanted.

Temperature for NPH is not for group all
User—assigned temperature to NPH fix does not compute temperature for all atoms. Since NPH
computes a global pressure, the kinetic energy contribution from the temperature is assumed to also
be for all atoms. Thus the pressure used by NPH could be inaccurate.

Temperature for NPT is not for group all
User—assigned temperature to NPT fix does not compute temperature for all atoms. Since NPT
computes a global pressure, the kinetic energy contribution from the temperature is assumed to also
be for all atoms. Thus the pressure used by NPT could be inaccurate.

Temperature for thermo pressure is not for group all
User—assigned temperature to thermo via the thermo_modify command does not compute temperat
for all atoms. Since thermo computes a global pressure, the kinetic energy contribution from the
temperature is assumed to also be for all atoms. Thus the pressure printed by thermo could be
inaccurate.

Using compute temp/deform with inconsistent fix deform remap option
Fix nvt/sllod assumes deforming atoms have a velocity profile provided by "remap v" or "remap
none" as a fix deform option.

Using compute temp/deform with no fix deform defined
Self-explanatory.

Using pair tail corrections with nonperiodic system
This is probably a bogus thing to do, since tail corrections are computed by integrating the density of
a periodic system out to infinity.

Variable equal keyword used with non—current thermo
The evaluation of the variable may be inaccurate as a result.

Warnings: 94

Previous Section — LAMMPS WWW Site — LAMMPS Documentation — LAMMPS Commands — Next

Section

10. Future and history

This section lists features we are planning to add to LAMMPS, features of previous versions of LAMMPS,
and features of other parallel molecular dynamics codes I've distributed.

10.1 Coming attractions
10.2 Past versions

10.1 Coming attractions

The current version of LAMMPS incorporates nearly all the features from previous parallel MD codes
developed at Sandia. These include earlier versions of LAMMPS itself, Warp and ParaDyn for metals, and
GranFlow for granular materials.

These are new features we'd like to eventually add to LAMMPS. Some are being worked on; some haven't
been implemented because of lack of time or interest; others are just a lot of work!

* Monte Carlo bond—swapping for polymers (was in Fortran LAMMPS)
* torsional shear boundary conditions and temperature calculation

* NPT with changing box shape (Parinello-Rahman)

* bond creation potentials

* long-range point dipole solver

* REBO bond-order potential

» ReaxFF force field from Bill Goddard's group

10.2 Past versions

LAMMPS development began in the mid 1990s under a cooperative research &development agreement
(CRADA) between two DOE labs (Sandia and LLNL) and 3 companies (Cray, Bristol Myers Squibb, and
Dupont). Soon after the CRADA ended, a final F77 version of the code, LAMMPS 99, was released. As
development of LAMMPS continued at Sandia, the memory management in the code was converted to FO0
final F90 version was released as LAMMPS 2001.

The current LAMMPS is a rewrite in C++ and was first publicly released in 2004. It includes many new
features, including features from other parallel molecular dynamics codes written at Sandia, namely ParaDy
Warp, and GranFlow. ParaDyn is a parallel implementation of the popular serial DYNAMO code developed
by Stephen Foiles and Murray Daw for their embedded atom method (EAM) metal potentials. ParaDyn uses
atom- and force—decomposition algorithms to run in parallel. Warp is also a parallel implementation of the
EAM potentials designed for large problems, with boundary conditions specific to shearing solids in varying
geometries. GranFlow is a granular materials code with potentials and boundary conditions peculiar to
granular systems. All of these codes (except ParaDyn) use spatial-decomposition techniques for their
parallelism.

These older codes are available for download from the LAMMPS WWW site, except for Warp &GranFlow
which were primarily used internally. A brief listing of their features is given here.

LAMMPS 2001

10. Future and history 95

http://lammps.sandia.gov
http://lammps.sandia.gov

* F90 + MPI

e dynamic memory

« spatial-decomposition parallelism

* NVE, NVT, NPT, NPH, rRESPA integrators
 LJ and Coulombic pairwise force fields

« all-atom, united—-atom, bead-spring polymer force fields
« CHARMM-compatible force fields

* class 2 force fields

* 3d/2d Ewald &PPPM

« various force and temperature constraints
* SHAKE

* Hessian-free truncated—Newton minimizer
« user—defined diagnostics

LAMMPS 99

F77 + MPI

static memory allocation

spatial-decomposition parallelism

most of the LAMMPS 2001 features with a few exceptions
no 2d Ewald &PPPM

molecular force fields are missing a few CHARMM terms
no SHAKE

Warp

* F90 + MPI

« spatial-decomposition parallelism

« embedded atom method (EAM) metal potentials + LJ

« lattice and grain—boundary atom creation

* NVE, NVT integrators

 boundary conditions for applying shear stresses

 temperature controls for actively sheared systems

» per—atom energy and centro—symmetry computation and output

ParaDyn

* F77 + MPI

« atom- and force—decomposition parallelism

» embedded atom method (EAM) metal potentials

« |attice atom creation

* NVE, NVT, NPT integrators

« all serial DYNAMO features for controls and constraints

GranFlow

* F90 + MPI

« spatial-decomposition parallelism

« frictional granular potentials

* NVE integrator

 boundary conditions for granular flow and packing and walls

10. Future and history

96

* particle insertion

10. Future and history

97

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

angle_style charmm command
Syntax:
angle_style charmm

Examples:

angle_style charmm
angle_coeff 1 300.0 107.0 50.0 3.0

Description:

The charmm angle style uses the potential

)

E=K(0-0,)°+ Kyg(r — rup)?
with an additional Urey Bradley term based on the distance r between the 1st and 3rd atoms in the angle. K
thetaO, Kub, and Rub are coefficients defined for each angle type.
See (MacKerell) for a description of the CHARMM force field.

The following coefficients must be defined for each angle type via the angle coeff command as in the
example above, or in the data file or restart files read by the read_data or read_restart commands:

* K (energy/radian”™2)

« thetaO (degrees)

« K_ub (energy/distance”2)
 r_ub (distance)

ThetaO is specified in degrees, but LAMMPS converts it to radians internally; hence the units of K are in
energy/radian”2.

Restrictions:

This angle style can only be used if LAMMPS was built with the "molecular” package (which it is by default).
See the Making LAMMPS section for more info on packages.

Related commands:

angle_coeff

Default: none

(MacKerell) MacKerell, Bashford, Bellott, Dunbrack, Evanseck, Field, Fischer, Gao, Guo, Ha, et al, J Phys
Chem, 102, 3586 (1998).

angle_style charmm command 98

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

angle_style class2 command
Syntax:
angle_style class2

Examples:

angle_style class2
angle_coeff * 75.0

Description:

The class2 angle style uses the potential

F = FE,+ Ey+ F),
E, = Ky0—00) + Ks(0—0o)° + Ky(0— 6)"
Fy, = M(rij =TTk — T2)

Eya = Ni(ri; —ri)(0 —0o) + Na(rje — r2)(0 — o)
where Ea is the angle term, Ebb is a bond—-bond term, and Eba is a bond—angle term. ThetaO is the equilibr
angle and rl and r2 are the equilibrium bond lengths.
See (Sun) for a description of the COMPASS class2 force field.

For this style, coefficients for the Ea formula can be specified in the input script or data file. These are the 4
coefficients:

« thetaO (degrees)

» K2 (energy/radian”2)
» K3 (energy/radian”2)
* K4 (energy/radian”2)

ThetaO is specified in degrees, but LAMMPS converts it to radians internally; hence the units of K are in
energy/radian”2.

Coefficients for the Ebb and Eba formulas can only be specified in the data file.

For the Ebb formula, the coefficients are listed under a "BondBond Coeffs" heading and each line lists 3
coefficients:

* M (energy/distance”?)
* rl (distance)
* 12 (distance)

For the Eba formula, the coefficients are listed under a "BondAngle Coeffs" heading and each line lists 4
coefficients:

angle_style class2 command 99

http://lammps.sandia.gov

* N1 (energy/distance”?2)
* N2 (energy/distance”?2)
* rl (distance)
* 12 (distance)

The thetaO value in the Eba formula is not specified, since it is the same value from the Ea formula.
Restrictions:

This angle style can only be used if LAMMPS was built with the "class2" package. See the Making
LAMMPS section for more info on packages.

Related commands:

angle_coeff

Default: none

(Sun) Sun, J Phys Chem B 102, 7338-7364 (1998).

angle_style class2 command 100

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

angle_coeff command

Syntax:

angle_coeff N args

* N = angle type (see asterik form below)
« args = coefficients for one or more angle types

Examples:

angle_coeff 1 300.0 107.0
angle_coeff * 5.0
angle_coeff 2*10 5.0

Description:

Specify the angle force field coefficients for one or more angle types. The number and meaning of the
coefficients depends on the angle style. Angle coefficients can also be set in the data file read by the read
command or in a restart file.

N can be specified in one of two ways. An explicit numeric value can be used, as in the 1st example above.
a wild—card asterik can be used to set the coefficients for multiple angle types. This takes the form "*" or "*n
or "n*" or "m*n". If N = the number of angle types, then an asterik with no numeric values means all types
from 1 to N. A leading asterik means all types from 1 to n (inclusive). A trailing asterik means all types from
n to N (inclusive). A middle asterisk means all types from m to n (inclusive).

Note that using an angle_coeff command can override a previous setting for the same angle type. For
example, these commands set the coeffs for all angle types, then overwrite the coeffs for just angle type 2:

angle_coeff * 200.0 107.0 1.2
angle_coeff 2 50.0 107.0

A line in a data file that specifies angle coefficients uses the exact same format as the arguments of the
angle_coeff command in an input script, except that wild—card asterisks should not be used since coefficien
for all N types must be listed in the file. For example, under the "Angle Coeffs" section of a data file, the line
that corresponds to the 1st example above would be listed as

1300.0 107.0

Here is an alphabetic list of angle styles defined in LAMMPS. Click on the style to display the formula it
computes and coefficients specified by the associated angle coeff command:

» angle_style none - turn off angle interactions
» angle_style hybrid — define multiple styles of angle interactions

» angle_style charmm - CHARMM angle

» angle_style class?2 - COMPASS (class 2) angle
» angle_style cosine — cosine angle potential

angle_coeff command 101

http://lammps.sandia.gov

» angle_style cosine/squared — cosine squared angle potential
 angle_style harmonic — harmonic angle

Restrictions:

This command must come after the simulation box is defined by a read_data, read restart, or create_box
command.

An angle style must be defined before any angle coefficients are set, either in the input script or in a data file
Related commands:

angle_style

Default: none

angle_coeff command 102

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

angle_style cosine command
Syntax:
angle_style cosine

Examples:

angle_style cosine
angle_coeff * 75.0

Description:

The cosine angle style uses the potential
E = K[l 4 cos(#)]

where K is defined for each angle type.

The following coefficients must be defined for each angle type via the angle coeff command as in the
example above, or in the data file or restart files read hy the read_data or read_restart commands:

* K (energy)
Restrictions:

This angle style can only be used if LAMMPS was built with the "molecular”" package (which it is by default).
See the Making LAMMPS section for more info on packages.

Related commands:

angle_coeff

Default: none

angle_style cosine command 103

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

angle_style cosine/squared command

Syntax:
angle_style cosine/squared
Examples:

angle_style cosine/squared
angle_coeff 2*4 75.0 100.0

Description:

The cosine/squared angle style uses the potential
7 = K[cos(#) — cos(by)]*

where theta0 is the equilibrium value of the angle, and K is a prefactor. Note that the usual 1/2 factor is
included in K.

The following coefficients must be defined for each angle type via the angle coeff command as in the
example above, or in the data file or restart files read hy the read_data or read_restart commands:

» K (energy)
« thetaO (degrees)

ThetaO is specified in degrees, but LAMMPS converts it to radians internally.
Restrictions:

This angle style can only be used if LAMMPS was built with the "molecular”" package (which it is by default).
See the Making LAMMPS section for more info on packages.

Related commands:

angle_coeff

Default: none

angle_style cosine/squared command 104

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

angle_style harmonic command
Syntax:
angle_style harmonic

Examples:

angle_style harmonic
angle_coeff 1 300.0 107.0

Description:

The harmonic angle style uses the potential
E =K@ -6)>
where thetaO is the equilibrium value of the angle, and K is a prefactor. Note that the usual 1/2 factor is

included in K.

The following coefficients must be defined for each angle type via the angle coeff command as in the
example above, or in the data file or restart files read hy the read_data or read_restart commands:

* K (energy/radian”2)
« thetaO (degrees)

ThetaO is specified in degrees, but LAMMPS converts it to radians internally; hence the units of K are in
energy/radian”2.

Restrictions: none

This angle style can only be used if LAMMPS was built with the "molecular”" package (which it is by default).
See the Making LAMMPS section for more info on packages.

Related commands:

angle_coeff

Default: none

angle_style harmonic command 105

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

angle_style hybrid command

Syntax:

angle_style hybrid stylel style2 ...
« stylel,style2 = list of one or more angle styles

Examples:

angle_style hybrid harmonic cosine
angle_coeff 1 harmonic 80.0 1.2
angle_coeff 2* cosine 50.0

Description:

The hybrid style enables the use of multiple angle styles in one simulation. An angle style is assigned to eac
angle type. For example, angles in a polymer flow (of angle type 1) could be computed with a harmonic
potential and angles in the wall boundary (of angle type 2) could be computed with a cosine potential. The
assignment of angle type to style is made via the angle coeff command or in the data file.

In the angle_coeff command, the first coefficient sets the angle style and the remaining coefficients are thos
appropriate to that style. In the example above, the 2 angle_coeff commands would set angles of angle type

to be computed with a harmonic potential with coefficients 80.0, 1.2 for K, r0. All other angle types (2—-N)
would be computed with a cosine potential with coefficient 50.0 for K.

If the angle class2 potential is one of the hybrid styles, it requires additional BondBond and BondAngle
coefficients be specified in the data file. These lines must also have an additional "class2" argument added
after the angle type. For angle types which are assigned to other hybrid styles, use the style name (e.g.
"harmonic") appropriate to that style. The BondBond and BondAngle coeffs for that angle type will then be
ignored.

An angle style of none can be specified as an argument to angle_style hybrid and the corresponding
angle_coeff commands, if you desire to turn off certain angle types.

Restrictions:

This angle style can only be used if LAMMPS was built with the "molecular" package (which it is by default).
See the Making LAMMPS section for more info on packages.

Related commands:

angle_coeff

Default: none

angle_style hybrid command 106

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

angle_style none command
Syntax:
angle_style none

Examples:

angle_style none
Description:

Using an angle style of none means angle forces are not computed, even if triplets of angle atoms were liste
in the data file read by the read_data command.

Restrictions: none
Related commands: none

Default: none

angle_style none command 107

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

angle_style command

Syntax:
angle_style style
« style = none or hybrid or charmm or class2 or cosine or cosine/squared or harmonic

Examples:

angle_style harmonic
angle_style charmm
angle_style hybrid harmonic cosine

Description:

Set the formula(s) LAMMPS uses to compute angle interactions between triplets of atoms, which remain in
force for the duration of the simulation. The list of angle triplets is read in by a read data or read_restart
command from a data or restart file.

Hybrid models where angles are computed using different angle potentials can be setup using the hybrid an
style.

The coefficients associated with a angle style can be specified in a data or restart file or via the angle_coeff
command.

All angle potentials store their coefficient data in binary restart files which means angle_style and angle_coe
commands do not need to be re—specified in an input script that restarts a simulation. See the read restart
command for details on how to do this. The one exception is that angle_style hybrid only stores the list of
sub-styles in the restart file; angle coefficients need to be re—specified.

IMPORTANT NOTE: When both an angle and pair style is defined, the special bonds command often need
to be used to turn off (or weight) the pairwise interaction that would otherwise exist between 3 bonded atom:

In the formulas listed for each angle style, theta is the angle between the 3 atoms in the angle.

Here is an alphabetic list of angle styles defined in LAMMPS. Click on the style to display the formula it
computes and coefficients specified by the associated angle coeff command:

» angle_style none - turn off angle interactions
» angle_style hybrid — define multiple styles of angle interactions

» angle_style charmm - CHARMM angle

» angle_style class?2 - COMPASS (class 2) angle

» angle_style cosine — cosine angle potential

» angle_style cosine/squared — cosine squared angle potential

» angle_style harmonic — harmonic angle

Restrictions:

angle_style command 108

http://lammps.sandia.gov

Angle styles can only be set for atom_styles that allow angles to be defined.

Most angle styles are part of the "molecular" package. They are only enabled if LAMMPS was built with that
package. See the Making LAMMPS section for more info on packages. The doc pages for individual bond
potentials tell if it is part of a package.

Related commands:

angle_coeff

Default:

angle_style none

angle_style command 109

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

atom_modify command
Syntax:
atom_modify keyword value ...

< one or more keyword/value pairs may be appended
« keyword = map

map value = array or hash
Examples:
atom_maodify map hash
Description:
Modify properties of the atom style selected within LAMMPS.
The map keyword determines how atom ID lookup is done for molecular problems. Lookups are performed
by bond (angle, etc) routines in LAMMPS to find the local atom index associated with a global atom ID.
When the array value is used, each processor stores a lookup table of length N, where N is the total # of atc
in the system. This is the fastest method for most simulations, but a processor can run out of memory to sto
the table for very large simulations. The hash value uses a hash table to perform the lookups. This method «
be slightly slower than the array method, but its memory cost is proportional to N/P on each processor, whel
P is the total number of processors running the simulation.
Restrictions:
This command must be used before the simulation box is defined by a read_data or create_box command.
Related commands: none

Default:

By default, atomic (non—molecular) problems do not allocate maps. For molecular problems, the option
default is map = array.

atom_modify command 110

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

atom_style command

Syntax:

atom_style style args

« style = angle or atomic or bond or charge or dipole or dpd or ellipsoid or full or granular or
molecular or hybrid

args = none for any style except hybrid
hybrid args = list of one or more sub-styles

Examples:

atom_style atomic

atom_style bond

atom_style full

atom_style hybrid charge bond

Description:

Define what style of atoms to use in a simulation. This determines what attributes are associated with the
atoms. This command must be used before a simulation is setup via a read_data, read_restart. or create b
command.

Once a style is assigned, it cannot be changed, so use a style general enough to encompass all attributes. |
with style bond, angular terms cannot be used or added later to the model. It is OK to use a style more gene
than needed, though it may be slightly inefficient.

The choice of style affects what quantities are stored by each atom, what quantities are communicated
between processors to enable forces to be computed, and what quantities are listed in the data file read by
read_data command.

These are the attributes of each style. All styles store coordinates, velocities, atom IDs and types.

« angle = bonds and angles - e.g. bead—spring polymers with stiffness

« atomic = only the default values

* bond = bonds - e.g. bead-spring polymers

 charge = charge

« dipole = charge and dipole moment

 dpd = default values, also communicates velocities

« ellipsoid = quaternion for particle orientation, angular velocity/momentum
« full = molecular + charge — e.g. biomolecules, charged polymers
 granular = granular atoms with rotational properties

« molecular = bonds, angles, dihedrals, impropers — e.g. all-atom polymers

Typically, simulations require only a single (non—hybrid) atom style. If some atoms in the simulation do not

have all the properties defined by a particular style, use the simplest style that defines all the needed proper
by any atom. For example, if some atoms in a simulation are charged, but others are not, use the charge sty
If some atoms have bonds, but others do not, use the bond style. The only scenario where the hybrid style i

atom_style command 111

http://lammps.sandia.gov

needed is if there is no single style which defines all needed properties of all atoms. E.g. if you want charge
DPD particles, you would need to use "atom_style hybrid dpd charge". When a hybrid style is used, atoms
store and communicate the union of all quantities implied by the individual styles.

LAMMPS can be extended with new atom styles;_see this section.

Restrictions:

This command cannot be used after the simulation box is defined by a read_data or create_box command.
The angle, bond, full, and molecular styles are part of the "molecular" package. The granular style is part of
the "granular" package. The dpd style is part of the "dpd" package. The dipole style is part of the "dipole"
package. The ellipsoid style is part of the "ellipsoid" package. They are only enabled if LAMMPS was built
with that package. See the Making LAMMPS section for more info.

Related commands:

read_data, pair_style

Default:

atom_style atomic

atom_style command 112

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

bond_style class2 command
Syntax:
bond_style class2

Examples:

bond_style class2
bond_coeff 1 1.0 100.0 80.0 80.0

Description:

The class2 bond style uses the potential
E = Ky(r — 10)* + Ka(r —ro)® + Ky(r — 70)*

where r0 is the equilibrium bond distance.
See (Sun) for a description of the COMPASS class2 force field.

The following coefficients must be defined for each bond type via the bond coeff command as in the examp
above, or in the data file or restart files read by the read data or read restart commands:

* RO (distance)

* K2 (energy/distance”2)

» K3 (energy/distance”2)

* K4 (energy/distance”2)
Restrictions:

This bond style can only be used if LAMMPS was built with the "class2" package. See the Making LAMMPS
section for more info on packages.

Related commands:
bond_coeff, delete_bonds

Default: none

(Sun) Sun, J Phys Chem B 102, 7338-7364 (1998).

bond_style class2 command 113

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

bond_coeff command

Syntax:

bond_coeff N args

* N = bond type (see asterisk form below)
« args = coefficients for one or more bond types

Examples:

bond_coeff580.0 1.2
bond_coeff*30.01.51.01.0
bond_coeff 1*4 30.0 1.51.0 1.0
bond_coeff 1 harmonic 200.0 1.0

Description:

Specify the bond force field coefficients for one or more bond types. The number and meaning of the
coefficients depends on the bond style. Bond coefficients can also be set in the data file read by the read_d:
command or in a restart file.

N can be specified in one of two ways. An explicit numeric value can be used, as in the 1st example above.
a wild—card asterisk can be used to set the coefficients for multiple bond types. This takes the form "*" or
"n" or "n*" or "m*n". If N = the number of bond types, then an asterisk with no numeric values means all
types from 1 to N. A leading asterisk means all types from 1 to n (inclusive). A trailing asterisk means all
types from n to N (inclusive). A middle asterisk means all types from m to n (inclusive).

Note that using a bond_coeff command can override a previous setting for the same bond type. For exampls
these commands set the coeffs for all bond types, then overwrite the coeffs for just bond type 2:

bond_coeff * 100.0 1.2
bond_coeff 2 200.0 1.2

A line in a data file that specifies bond coefficients uses the exact same format as the arguments of the
bond_coeff command in an input script, except that wild—card asterisks should not be used since coefficient
for all N types must be listed in the file. For example, under the "Bond Coeffs" section of a data file, the line
that corresponds to the 1st example above would be listed as

580.01.2

Here is an alphabetic list of bond styles defined in LAMMPS. Click on the style to display the formula it
computes and coefficients specified by the associated bond coeff command:

* bond_style none - turn off bonded interactions
» bond_style hybrid — define multiple styles of bond interactions

* bond_style class?2 — COMPASS (class 2) bond
» bond_style fene — FENE (finite—extensible non-linear elastic) bond
* bond_style fene/expand — FENE bonds with variable size particles

bond_coeff command 114

http://lammps.sandia.gov

 bond_style harmonic — harmonic bond
» bond_style morse — Morse bond

 bond_style nonlinear — nonlinear bond
» bond_style guartic — breakable quartic bond

Restrictions:

This command must come after the simulation box is defined by a read_data, read restart, or create_box
command.

A bond style must be defined before any bond coefficients are set, either in the input script or in a data file.
Related commands:

bond_style

Default: none

bond_coeff command 115

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

bond_style fene command
Syntax:
bond_style fene

Examples:

bond_style fene
bond_coeff 1 30.01.51.01.0

Description:
The fene bond style uses the potential

P = l].-')/\'li’[:ln[l (]]T)J] - 4e [(;)1-’
0 \ T/

\ /

to define a finite extensible nonlinear elastic (FENE) potential (Kremer), used for bead-spring polymer
models. The first term is attractive, the 2nd Lennard—-Jones term is repulsive. The first term extends to RO, tl
maximum extent of the bond. The 2nd term is cutoff at 27(1/6) sigma, the minimum of the LJ potential.

The following coefficients must be defined for each bond type via the bond coeff command as in the examp
above, or in the data file or restart files read by the read data or read restart commands:

» K (energy/distance”2)

* RO (distance)

« epsilon (energy)

 sigma (distance)
Restrictions:

This bond style can only be used if LAMMPS was built with the "molecular” package (which it is by default).
See the Making LAMMPS section for more info on packages.

Related commands:
bond_coeff, delete_bonds

Default: none

(Kremer) Kremer, Grest, J Chem Phys, 92, 5057 (1990).

bond_style fene command 116

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

bond_style fene/expand command
Syntax:
bond_style fene/expand

Examples:

bond_style fene/expand
bond_coeff 1 30.01.51.01.00.5

Description:

The fene/expand bond style uses the potential

o\ 2 12 6
E =—05KR,In |1 ('—A\ b 4 s 2
. Ry (r —A) (r—A)

to define a finite extensible nonlinear elastic (FENE) potential (Kremer), used for bead-spring polymer
models. The first term is attractive, the 2nd Lennard-Jones term is repulsive.

The fene/expand bond style is similar to fene except that an extra shift factor of delta (positive or negative) i
added to r to effectively change the bead size of the bonded atoms. The first term now extends to RO + delt
and the 2nd term is cutoff at 2*(1/6) sigma + delta.

The following coefficients must be defined for each bond type via the bond coeff command as in the examp
above, or in the data file or restart files read by the read data or read restart commands:

» K (energy/distance”2)

* RO (distance)

« epsilon (energy)

* sigma (distance)

« delta (distance)
Restrictions:

This bond style can only be used if LAMMPS was built with the "molecular" package (which it is by default).
See the Making LAMMPS section for more info on packages.

Related commands:
bond_coeff, delete_bonds

Default: none

bond_style fene/expand command 117

http://lammps.sandia.gov

(Kremer) Kremer, Grest, J Chem Phys, 92, 5057 (1990).

bond_style fene/expand command 118

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

bond_style harmonic command
Syntax:
bond_style harmonic

Examples:

bond_style harmonic
bond_coeff580.0 1.2

Description:

The harmonic bond style uses the potential

)

F=K(r—nmrg)

where r0 is the equilibrium bond distance. Note that the usual 1/2 factor is included in K.

The following coefficients must be defined for each bond type via the bond coeff command as in the examp
above, or in the data file or restart files read by the read data or read restart commands:

» K (energy/distance”2)
« 10 (distance)

Restrictions:

This bond style can only be used if LAMMPS was built with the "molecular” package (which it is by default).
See the Making LAMMPS section for more info on packages.

Related commands:
bond_coeff, delete_bonds

Default: none

bond_style harmonic command 119

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

bond_style hybrid command
Syntax:
bond_style hybrid stylel style2 ...
« stylel,style2 = list of one or more bond styles

Examples:

bond_style hybrid harmonic fene
bond_coeff 1 harmonic 80.0 1.2
bond_coeff 2* fene 30.0 1.5 1.0 1.0

Description:

The hybrid style enables the use of multiple bond styles in one simulation. A bond style is assigned to each
bond type. For example, bonds in a polymer flow (of bond type 1) could be computed with a fene potential
and bonds in the wall boundary (of bond type 2) could be computed with a harmonic potential. The
assignment of bond type to style is made via the bond_coeff command or in the data file.

In the bond_coeff command, the first coefficient sets the bond style and the remaining coefficients are those
appropriate to that style. In the example above, the 2 bond_coeff commands would set bonds of bond type :
be computed with a harmonic potential with coefficients 80.0, 1.2 for K, r0. All other bond types (2—N) would
be computed with a fene potential with coefficients 30.0, 1.5, 1.0, 1.0 for K, RO, epsilon, sigma.

A bond style of none can be specified as an argument to bond_style hybrid and the corresponding bond_co
commands, if you desire to turn off certain bond types.

Restrictions:

This bond style can only be used if LAMMPS was built with the "molecular” package (which it is by default).
See the Making LAMMPS section for more info on packages.

Related commands:
bond coeff, delete _bonds

Default: none

bond_style hybrid command 120

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

bond_style morse command
Syntax:
bond_style morse

Examples:

bond_style morse
bond_coeff51.02.01.2

Description:

The morse bond style uses the potential
E =D 1 - eat-r)]*

where r0 is the equilibrium bond distance, alpha is a stiffness parameter, and D determines the depth of the
potential well.

The following coefficients must be defined for each bond type via the bond coeff command as in the examp
above, or in the data file or restart files read by the read data or read restart commands:

* D (energy)
« alpha (inverse distance)
« r0 (distance)

Restrictions:

This bond style can only be used if LAMMPS was built with the "molecular” package (which it is by default).
See the Making LAMMPS section for more info on packages.

Related commands:
bond_coeff, delete_bonds

Default: none

bond_style morse command 121

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

bond_style none command
Syntax:
bond_style none

Examples:

bond_style none
Description:

Using a bond style of none means bond forces are not computed, even if pairs of bonded atoms were listed
the data file read by the read_data command.

Restrictions: none
Related commands: none

Default: none

bond_style none command 122

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

bond_style nonlinear command
Syntax:
bond_style nonlinear

Examples:

bond_style nonlinear
bond_coeff2 100.0 1.1 1.4

Description:

The nonlinear bond style uses the potential

/ \2
e\r To)™

:/\') (r 7'r|:"‘J

to define an anharmonic spring (Rector) of equilibrium length rO and maximum extension lamda.

The following coefficients must be defined for each bond type via the bond coeff command as in the examp
above, or in the data file or restart files read by the read data or read restart commands:

* epsilon (energy)
* 10 (distance)
 lamda (distance)

Restrictions:

This bond style can only be used if LAMMPS was built with the "molecular” package (which it is by default).
See the Making LAMMPS section for more info on packages.

Related commands:
bond_coeff, delete_bonds

Default: none

(Rector) Rector, Van Swol, Henderson, Molecular Physics, 82, 1009 (1994).

bond_style nonlinear command 123

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

bond_style quartic command

Syntax:

bond_style quartic

Examples:

bond_style quartic
bond_coeff 2 1200 -0.55 0.25 1.3 34.6878

Description:

The quartic bond style uses the potential

oy) y ¢ , ge R
E=K(r—R)r—R.— B,)(r— R. — B;) + Uy +4¢ [(—)

\ T/

to define a bond that can be broken as the simulation proceeds (e.g. due to a polymer being stretched). The
sigma and epsilon used in the LJ portion of the formula are both set equal to 1.0 by LAMMPS.

The following coefficients must be defined for each bond type via the bond coeff command as in the examp
above, or in the data file or restart files read by the read data or read restart commands:

« K (energy/distance”2)
« B1 (distance)

« B2 (distance)

* Rc (distance)

« UO (energy)

This potential was constructed to mimic the FENE bond potential for coarse—grained polymer chains. When
monomers with sigma = epsilon = 1.0 are used, the following choice of parameters gives a quartic potential
that looks nearly like the FENE potential: K = 1200, B1 = -0.55, B2 = 0.25, Rc = 1.3, and U0 = 34.6878.
Different parameters can be specified using the bond_ coeff command, but you will need to choose them
carefully so they form a suitable bond potential.

Rc is the cutoff length at which the bond potential goes smoothly to a local maximium. If a bond length ever
becomes > Rc, LAMMPS "breaks" the bond, which means two things. First, the bond potential is turned off
by setting its type to 0, and is no longer computed. Second, a pairwise interaction between the two atoms is
turned on, since they are no longer bonded.

LAMMPS does the second task via a computational sleight—of-hand. It subtracts the pairwise interaction as
part of the bond computation. When the bond breaks, the subtraction stops. For this to work, the pairwise
interaction must always be computed by _the pair_style command, whether the bond is broken or not. This
means that special_bonds must be set to 1,1,1, as indicated as a restriction below.

Note that when bonds are dumped to a file_ via dump bond, bonds with type 0 are not included. The
delete_bonds command can also be used to query the status of broken bonds or permanently delete them,

bond_style quartic command 124

http://lammps.sandia.gov

delete_bonds all stats
delete_bonds all bond 0 remove

Restrictions:

This bond style can only be used if LAMMPS was built with the "molecular" package (which it is by default).
See the Making LAMMPS section for more info on packages.

The quatrtic style requires that special_bonds parameters be set to 1,1,1. Three— and four—body interactions
(angle, dihedral, etc) cannot be used with quartic bonds.

Related commands:
bond_coeff, delete_bonds

Default: none

bond_style quartic command 125

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

bond_style command

Syntax:

bond_style style args

« style = none or hybrid or class2 or fene or fene/expand or harmonic or morse or nonlinear or quartic

args = none for any style except hybrid
hybrid args = list of one or more styles

Examples:

bond_style harmonic
bond_style fene
bond_style hybrid harmonic fene

Description:

Set the formula(s) LAMMPS uses to compute bond interactions between pairs of atoms. In LAMMPS, a bon
differs from a pairwise interaction, which are set via the pair_ style command. Bonds are defined between
specified pairs of atoms and remain in force for the duration of the simulation (unless the bond breaks whict
is possible in some bond potentials). The list of bonded atoms is read_in by a read_data or read_restart
command from a data or restart file. By contrast, pair potentials are typically defined between all pairs of
atoms within a cutoff distance and the set of active interactions changes over time.

Hybrid models where bonds are computed using different bond potentials can be setup using the hybrid bor
style.

The coefficients associated with a bond style can be specified in a data or restart file or via the bond_coeff
command.

All bond potentials store their coefficient data in binary restart files which means bond_style and bond_coeff
commands do not need to be re—specified in an input script that restarts a simulation. See the read restart
command for details on how to do this. The one exception is that bond_style hybrid only stores the list of
sub-styles in the restart file; bond coefficients need to be re—specified.

IMPORTANT NOTE: When both a bond and pair style is defined. the special_bonds command often needs
be used to turn off (or weight) the pairwise interaction that would otherwise exist between 2 bonded atoms.

In the formulas listed for each bond style, r is the distance between the 2 atoms in the bond.

Here is an alphabetic list of bond styles defined in LAMMPS. Click on the style to display the formula it
computes and coefficients specified by the associated bond coeff command:

* bond_style none - turn off bonded interactions
» bond_style hybrid — define multiple styles of bond interactions

* bond_style class2 — COMPASS (class 2) bond

bond_style command 126

http://lammps.sandia.gov

» bond_style fene — FENE (finite—extensible non-linear elastic) bond
» bond_style fene/expand — FENE bonds with variable size particles
* bond_style harmonic — harmonic bond

* bond_style morse — Morse bond

 bond_style nonlinear — nonlinear bond
» bond_style guartic — breakable quartic bond

Restrictions:

Bond styles can only be set for atom styles that allow bonds to be defined.

Most bond styles are part of the "molecular” package. They are only enabled if LAMMPS was built with that
package. See the Making LAMMPS section for more info on packages. The doc pages for individual bond
potentials tell if it is part of a package.

Related commands:

bond_coeff, delete_bonds

Default:

bond_style none

bond_style command 127

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

boundary command

Syntax:

boundary xy z

* X,y,Z=p orsorform, one or two letters

p is periodic
f is non—periodic and fixed
s is non—periodic and shrink-wrapped
m is non—periodic and shrink—wrapped with a minimum value

Examples:

boundarypp f
boundary p fs p
boundary s f fm

Description:

Set the style of boundaries for the global simulation box in each dimension. A single letter assigns the same
style to both the lower and upper face of the box. Two letters assigns the first style to the lower face and the
second style to the upper face. The initial size of the simulation box is set by the read_data, read_restart, or
create_box commands.

The style p means the box is periodic, so that particles interact across the boundary, and they can exit one ¢
of the box and re—enter the other end. A periodic dimension can change in size due to constant pressure
boundary conditions or box deformation (see_the fix npt and fix deform commands). The p style must be
applied to both faces of a dimension.

The styles f, s, and m mean the box is non—periodic, so that particles do not interact across the boundary ar
do not move from one side of the box to the other. For style f, the position of the face is fixed. If an atom
moves outside the face it may be lost. For style s, the position of the face is set so as to encompass the atol
in that dimension (shrink—wrapping), no matter how far they move. For style m, shrink—wrapping occurs, but
is bounded by the value specified in the data or restart file or set_by the create _box command. For example,
the upper z face has a value of 50.0 in the data file, the face will always be positioned at 50.0 or above, eve
the maximum z-extent of all the atoms becomes less than 50.0.

Restrictions:

This command cannot be used after the simulation box is defined by a read_data or create_box command.
Related commands:

See the thermo_modify command for a discussion of lost atoms.

Default:

boundary p p p

boundary command 128

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

clear command
Syntax:
clear

Examples:

(commands for 1st simulation)
clear
(commands for 2nd simulation)

Description:
This command deletes all atoms, restores all settings to their default values, and frees all memory allocated
LAMMPS. Once a clear command has been executed, it is as if LAMMPS were starting over, with only the

exceptions noted below. This command enables multiple jobs to be run sequentially from one input script.

These settings are not affected by a clear command: the working directory (shell command), log file status
(log command), echo status (echo command), and input script variables (variable command).

Restrictions: none
Related commands: none

Default: none

clear command 129

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

communicate command
Syntax:
communicate style

« style = single or multi
Examples:
communicate multi
Description:

This command sets the style of inter—processor communication that occurs each timestep as atom coordina
and other properties are exchanged between neighboring processors.

The default style is single which means each processor acquires information for ghost atoms that are within
single distance from its sub—domain. The distance is the maximum of the neighbor cutoff for all atom type
pairs.

For many systems this is an efficient algorithm, but for systems with widely varying cutoffs for different type
pairs, the multi style can be faster. In this case, each atom type is assigned its own distance cutoff for
communication purposes, and fewer atoms will be communicated. See the neighbor multi command for a
neighbor list construction option that may also be beneficial for simulations of this kind.

Restrictions: none

Related commands:

neighbor

Default:

style = single

communicate command 130

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

compute command

Syntax:
compute ID group-ID style args

« ID = user—assigned name for the computation

e group—ID = ID of the group of atoms to perform the computation on
« style = one of a list of possible style names (see below)

 args = arguments used by a particular style

Examples:

compute 1 all temp
compute newtemp flow temp/partial 1 1 0
compute 3 all ke/atom

Description:

Create a computation that will be performed on a group of atoms.

In LAMMPS, a "compute” is used in several ways. Computes that calculate one or more values for the entire
group of atoms can output those values via the thermo_style custom or fix ave/time command. Or the value:
can be referenced in_a variable equal command. Computes that calculate a temperature or pressure are use
fixes that do thermostatting or barostatting and when atom velocities are created. Computes that calculate c

or more values for each atom in the group can output those values_via the dump custom command or the fix
ave/spatial command.

LAMMPS creates its own computes for thermodynamic output. Two computes are always created, named
"thermo_temp" and "thermo_pressure", as if these commands had been invoked:

compute thermo_temp all temp
compute thermo_pressure all pressure thermo_temp

Additional computes are created if the thermo style requires it. See the documentation for the thermo_style
command.

The dumping of atom snapshots and fixes that compute temperature or pressure also create computes as
required. These are discussed in the documentation for the dump custom and specific fix commands.

In all these cases, the default computes can be replaced by computes defined in the input script, as describ
by the thermo_modify and fix modify commands.

Properties of either a default of user—defined compute can be modified via the compute modify command.
Computes can be deleted with the uncompute command.

Code for new computes can be added to LAMMPS (see this section of the manaul) and the results of their
calculations accessed in the various ways described above.

compute command 131

http://lammps.sandia.gov

Each compute style has its own doc page which describes its arguments and what it does. Here is an
alphabetic list of compute styles defined in LAMMPS:

« centro/atom — centro—symmetry parameter for each atom

* coord/atom — coordination number for each atom

* epair/atom — pairwise energy for each atom

« etotal/atom - total energy (ke + epair) for each atom

« ke/atom - kinetic energy for each atom

* pressure — total pressure and pressure tensor

« rotate/dipole - rotational energy of dipolar atoms

« rotate/gran - rotational energy of granular atoms

* stress/atom - stress tensor for each atom

 temp — temperature of group of atoms

« temp/asphere — temperature of aspherical particles

« temp/deform - temperature excluding box deformation velocity
« temp/dipole — temperature of point dipolar particles

« temp/partial — temperature excluding one or more dimensions of velocity
 temp/ramp - temperature excluding ramped velocity component
« temp/region — temperature of a region of atoms

» variable — calculate a scalar value from a variable

» variable/atom - calculate a formula for each atom

Restrictions: none

Related commands:

uncompute, compute_modify

Default: none

compute command 132

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

compute centro/atom command
Syntax:
compute ID group-ID centro/atom

« ID, group-ID are documented_in compute command
 centro/atom = style name of this compute command

Examples:
compute 1 all centro/atom

Description:

Define a computation that calculates the centro—symmetry parameter for each atom in a group. This can be
output via the dump custom command.

This parameter is computed using the following formula from (Kelchner)

P=Y|R + R sl

=1

where the 12 nearest neighbors are found and Ri and Ri+6 are the vectors from the central atom to the
opposite pair of nearest neighbors. In solid state systems this is a useful measure of the local lattice disorde
around an atom and can be used to characterize whether the atom is part of a perfect lattice, a local defect |
a dislocation or stacking fault), or at a surface.

The neighbor list needed to compute this quantity is constructed each time the calculation is performed (i.e.
each time a snapshot of atoms is dumped). Thus it can be inefficient to compute/dump this quantity too
frequently or to have multiple compute/dump commands, each of a centro/atom style.

Restrictions: none

Related commands: none

Default: none

(Kelchner) Kelchner, Plimpton, Hamilton, Phys Rev B, 58, 11085 (1998).

compute centro/atom command 133

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

compute coord/atom command

Syntax:

compute ID group—ID coord/atom cutoff
« ID, group-ID are documented_in compute command
 coord/atom = style name of this compute command

« cutoff = distance within which to count coordination neighbors (distance units)

Examples:

compute 1 all coord/atom 2.0
Description:

Define a computation that calculates the coordination number for each atom in a group. This can be output
the_dump custom command.

The coordination number is defined as the number of neighbor atoms within the specified cutoff distance fro
the central atom.

The neighbor list needed to compute this quantity is constructed each time the calculation is performed (i.e.
each time a snapshot of atoms is dumped). Thus it can be inefficient to compute/dump this quantity too
frequently or to have multiple compute/dump commands, each of a coord/atom style.

Restrictions: none

Related commands: none

Default: none

compute coord/atom command 134

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

compute epair/atom command
Syntax:
compute ID group—ID epair/atom

« ID, group-ID are documented_in compute command
 epair/atom = style name of this compute command

Examples:
compute 1 all epair/atom

Description:

Define a computation that computes the per—atom pairwise energy for each atom in a group. This can be
output via the dump custom command.

The pairwise energy for each atom is computed by looping over its neighbors and computing the energy
associated with the defined pair_style command for each 1J pair (divided by 2). Thus the sum of per—-atom
energy for all atoms should give the total pairwise energy of the system.

For force fields that include a contribution to the pairwise energy that is computed as part of dihedral terms
(i.e. 1-4 interactions), this contribution is not included in the per—atom pairwise energy.

Computation of per—atom pairwise energy requires a loop thru the neighbor list and inter—processor
communication, so it can be inefficient to compute/dump this quantity too frequently or to have multiple
compute/dump commands, each of a epair/atom style.

Restrictions: none

Related commands: none

Default: none

compute epair/atom command 135

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

compute etotal/atom command

Syntax:

compute ID group—-ID etotal/atom compute—-ID
« ID, group-ID are documented_in compute command
« etotal/atom = style name of this compute command

« compute-ID = ID of compute that calculates per—atom pairwise energy

Examples:

compute 1 all etotal/atom atomEng
Description:

Define a computation that computes the total energy (kinetic + pairwise) for each atom in a group. This can
output via the dump custom command.

The kinetic energy for each atom is computed the same way as in the compute ke/atom command, namely
1/2 m vA2.

The pairwise energy is not calculated by this compute, but rather_by the epair/atom compute specified as th
last argument of the command.

Note that the total energy per atom as defined here does not include contributions due to bonds, angles, etc
that the atom is part of.

Restrictions: none
Related commands:

compute epair/atom

Default: none

compute etotal/atom command 136

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

compute ke/atom command
Syntax:
compute ID group-ID ke/atom

« ID, group-ID are documented_in compute command
 ke/atom = style name of this compute command

Examples:

compute 1 all ke/atom
Description:

Define a computation that calculates the per—atom kinetic energy for each atom in a group. This can be outy
via the_dump custom command.

The kinetic energy is simply 1/2 m v*2, where m is the mass and v is the velocity of each atom.
Restrictions: none
Related commands:

dump custom

Default: none

compute ke/atom command 137

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

compute_modify command

Syntax:

compute_maodify compute-ID keyword value ...

e compute-ID = ID of the compute to modify
« one or more keyword/value pairs may be listed
« keyword = extra or dynamic

extra value = N
N = # of extra degrees of freedom to subtract
dynamic value = yes or no
yes/no = do or do not recompute the number of atoms contributing to the temperature

Examples:

compute_modify myTemp extra 0
compute_modify newtemp dynamic yes extra 600

Description:

Modify one or more parameters of a previously defined compute. Not all compute styles support all
parameters.

The extra keyword refers to how many degrees—of-freedom are subtracted (typically from 3N) as a
normalizing factor in a temperature computation. Only computes that compute a temperature use this optior
The default is 3 which is a correction factor for an ensemble of velocities with zero total linear momentum.
The dynamic keyword determines whether the number of atoms N in the compute group is re—computed ea
time a temperature is computed. Only compute styles that compute a temperature use this option. By defau
N is assumed to be constant. If you are adding atoms to the system (see the fix pour or fix deposit commant
or expect atoms to be lost (e.g. due to evaporation), then this option can be used to insure the temperature |
correctly normalized.

Restrictions: none

Related commands:

compute

Default:

The option defaults are extra = 3 and dynamic = no.

compute_modify command 138

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

compute pressure command
Syntax:
compute ID group—ID pressure compute-ID
« ID, group-ID are documented_in compute command
* pressure = style name of this compute command
e compute-ID = ID of compute that calculates temperature
Examples:
compute 1 all pressure myTemp
Description:
Define a computation that calculates the pressure of atoms averaged over the entire system. The specified
group must be "all". See the dump custom command for how to dump the per—atom stress tensor if you war

more localized information about pressure (stress) in your system.

The pressure is computed by the standard formula

_ NksT E¥rie f,
Vv 3V

l)

where N is the number of atoms in the system (see discussion of DOF below), Kb is the Boltzmann constan
T is the temperature, V is the system volume, and the second term is the virial, computed within LAMMPS
for all pairwise as well as 2-body, 3—-body, 4-body bonded interactions.

A 6—component pressure tensor is also calculated by this compute which can be output by the thermo_style
custom command. The formula for the components of the tensor is the same as in above formula, except th
the first term uses the components of the kinetic energy tensor (vx * vy instead of v*2 for temperature) and
the second term uses Rx * Fy for the Wxy component of the virial tensor, etc.

The temperature and kinetic energy tensor is not calculated by this compute, but rather by the temperature
compute specified as the last argument of the command. Normally this compute should calculate the
temperature of all atoms for consistency with the virial term, but any compute style that calculates
temperature can be used, e.g. one that excludes frozen atoms or other degrees of freedom.

Note that the N is the above formula is really degrees—of-freedom/3 where the DOF is specified by the
temperature compute. See the various compute temperature styles for details.

Restrictions: none

Related commands:

compute temp. thermo_style

compute pressure command 139

http://lammps.sandia.gov

Default: none

compute pressure command 140

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

compute rotate/dipole command

Syntax:

compute ID group—-ID rotate/dipole

« ID, group-ID are documented_in compute command
« rotate/dipole = style name of this compute command

Examples:

compute 1 all rotate/dipole
Description:

Define a computation that calculates the total rotational energy of a group of atoms with point dipole
moments.

The rotational energy is calculated as the sum of 1/2 | w2 over all the atoms in the group, where | is the
moment of inertia of a disk/spherical (2d/3d) particle, and w is its angular velocity.

Restrictions: none
Related commands: none

Default: none

compute rotate/dipole command 141

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

compute rotate/gran command

Syntax:

compute ID group-ID rotate/gran

« ID, group-ID are documented_in compute command
« rotate/gran = style name of this compute command

Examples:

compute 1 all rotate/gran
Description:
Define a computation that calculates the total rotational energy of a group of granular atoms.

The rotational energy is calculated as the sum of 1/2 | w2 over all the atoms in the group, where | is the
moment of inertia of a disk/spherical (2d/3d) particle, and w is its angular velocity.

Restrictions: none
Related commands: none

Default: none

compute rotate/gran command 142

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

compute stress/atom command
Syntax:
compute ID group-ID stress/atom

« ID, group-ID are documented_in compute command
« stress/atom = style name of this compute command

Examples:
compute 1 mobile stress/atom
Description:

Define a computation that computes the per—atom stress tensor for each atom in a group. The 6 component
can be output via the dump custom command.

The stress tensor is computed for only pairwise forces where the ab component of stress on atom i is given

)2

Sap = muv, v + :Z(ui a;) Fj,

< =1

where the first term is a kinetic energy component for atom i, j loops over the N neighbors of atom i, and Fb
one of 3 components of force on atom i due to atom j. Both a and b take on values x,y,z to generate the 6
components of the symmetric tensor.

Note that this formula for stress does not include virial contributions from intra—molecular interactions (e.g.
bonds, angles, torsions, etc). Also note that this quantity is the negative of the per—atom pressure tensor. It |
also really a stress—volume formulation. It would need to be divided by a per-atom volume to have units of
stress, but an individual atom's volume is not easy to compute in a deformed solid. Thus, if you sum the
diagonal components of the per—atom stress tensor for all atoms in the system and divide the sum by 3V,
where V is the volume of the system, you should get —P, where P is the total pressure of the system.

Computation of per—atom stress tensor components requires a loop thru the neighbor list and inter—process
communication, so it can be inefficient to compute/dump this quantity too frequently or to have multiple
compute/dump commands, each of a stress/atom style.

Restrictions: none

Related commands: none

Default: none

compute stress/atom command 143

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

compute temp command
Syntax:
compute ID group—ID temp

« ID, group-ID are documented_in compute command
 temp = style name of this compute command

Examples:

compute 1 all temp
compute myTemp mobile temp

Description:

Define a computation that calculates the temperature of a group of atoms. A compute of this style can be us
by any command that computes a temperature, e.q. thermo_modify. fix temp/rescale, fix npt, etc.

The temperature is calculated by the formula KE = dim/2 N k T, where KE = total kinetic energy of the groug
of atoms (sum of 1/2 m v*2), dim = 2 or 3 = dimensionality of the simulation, N = number of atoms in the
group, k = Boltzmann constant, and T = temperature.

A 6—component kinetic energy tensor is also calculated by this compute for use in the computation of a
pressure tensor. The formula for the components of the tensor is the same as the above formula, except the
v/~2 is replaced by vx * vy for the xy component, etc.

The number of atoms contributing to the temperature is assumed to be constant for the duration of the run; 1
the dynamic option of the compute_modify command if this is not the case.

This compute subtracts out degrees—of-freedom due to fixes that constrain molecular motion, such as fix

shake and fix rigid. This means the temperature of groups of atoms that include these constraints will be
computed correctly. If needed, the subtracted degrees—of-freedom can be altered using the extra option of

compute _modify command.

Restrictions: none

Related commands:

compute temp/partial, compute temp/region. compute pressure

Default: none

compute temp command 144

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

compute temp/asphere command
Syntax:
compute ID group-ID temp/asphere

« ID, group-ID are documented_in compute command
« temp/asphere = style name of this compute command

Examples:

compute 1 all temp/asphere
compute myTemp mobile temp/asphere

Description:

Define a computation that calculates the temperature of a group of aspherical or ellipsoidal particles. The
computation is similar to compute_temp, however, additional degrees of freedom (2 or 3) are incorporated fi
particles where the principal moments of inertia are unequal. The associated kinetic energy thus includes a
rotational term KE_rotational = 1/2 | w2, where | is the moment of inertia and w is the angular velocity.
Restrictions:

Can only be used if LAMMPS was built with the "asphere” package.

Related commands:

compute temp

Default: none

compute temp/asphere command 145

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

compute temp/deform command

Syntax:

compute ID group-ID temp/deform

« ID, group-ID are documented_in compute command
 temp/deform = style name of this compute command

Examples:

compute myTemp all temp/deform
Description:

Define a computation that calculates the temperature of a group of atoms, after subtracting out a streaming
velocity induced by the simulation box changing size and/or shape, for example in a non—equilibrium MD
(NEMD) simulation. The size/shape change is induced by use_of the fix deform command. A compute of this
style is created by the fix nvt/sllod command to compute the thermal temperature of atoms for thermostatting
purposes. A compute of this style can also be used by any command that computes a temperature, e.g.

thermo_modify, fix temp/rescale, fix npt, etc.

The deformation fix changes the box size and/or shape over time, so each point in the simulation box can b
thought of as having a "streaming" velocity. For example, if the box is being sheared in x, relative to y, then
points at the bottom of the box (low y) have a small x velocity, while points at the top of the box (hi y) have a
large x velocity. This position—dependent streaming velocity is subtracted from each atom's actual velocity t
yield a thermal velocity which is used to compute the temperature.

IMPORTANT NOTE_Eix deform has an option for remapping either atom coordinates or velocities to the
changing simulation box. To use this compute, the fix should NOT remap atom positions, but rather should |
atoms respond to the changing box by adjusting their own velocities (or let fix deform remap the atom
velocities). If the fix does remap atom positions, their velocity is not changed, and thus they do not have the
streaming velocity assumed by this compute. LAMMPS will warn you if this setting is not consistent.

The temperature is calculated by the formula KE = dim/2 N k T, where KE = total kinetic energy of the groug
of atoms (sum of 1/2 m v*2), dim = 2 or 3 = dimensionality of the simulation, N = number of atoms in the
group, k = Boltzmann constant, and T = temperature. Note that v in the kinetic energy formula is the atom's
thermal velocity.

A 6—component kinetic energy tensor is also calculated by this compute for use in the computation of a
pressure tensor. The formula for the components of the tensor is the same as the above formula, except the
v/~2 is replaced by vx * vy for the xy component, etc.

The number of atoms contributing to the temperature is assumed to be constant for the duration of the run; 1
the dynamic option of the compute_modify command if this is not the case.

This compute subtracts out degrees—of-freedom due to fixes that constrain molecular motion, such as fix
shake and fix rigid. This means the temperature of groups of atoms that include these constraints will be
computed correctly. If needed, the subtracted degrees—of-freedom can be altered using the extra option of

compute temp/deform command 146

http://lammps.sandia.gov

compute_modify command.

Restrictions: none
Related commands:

compute temp/ramp, fix deform., fix nvt/sllod

Default: none

compute temp/deform command 147

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

compute temp/dipole command
Syntax:
compute ID group-ID temp/dipole

« ID, group-ID are documented_in compute command
 temp/dipole = style name of this compute command

Examples:

compute 1 all temp/dipole
compute myTemp mobile temp/dipole

Description:

Define a computation that calculates the temperature of a group of particles that include a point dipole. The
computation is similar to compute_temp, however, additional degrees of freedom are inlclude to account for
the rotational state of the particles. The associated kinetic energy includes a rotational term KE_rotational =
1/2 1 w”2, where | is the moment of inertia and w is the angular velocity.

Restrictions:

Can only be used if LAMMPS was built with the "dipole" package.

Related commands:

compute temp

Default: none

compute temp/dipole command 148

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

compute temp/partial command

Syntax:

compute ID group-ID temp/partial xflag yflag zflag
« ID, group-ID are documented_in compute command

 temp/partial = style name of this compute command
« xflag,yflag,zflag = 0/1 for whether to exclude/include this dimension

Examples:
compute newT flow temp/partial 1 1 0
Description:

Define a compute to calculate the temperature of a group of atoms, after excluding one or more velocity
components. A compute of this style can be used by any command that computes a temperature, e.g.

thermo_modify, fix temp/rescale, fix npt, etc.

The temperature is calculated by the formula KE = dim/2 N k T, where KE = total kinetic energy of the groug
of atoms (sum of 1/2 m v~2), dim = dimensionality of the simulation, N = number of atoms in the group, k =
Boltzmann constant, and T = temperature. The calculation of KE excludes the x, y, or z dimensions if xflag,
yflag, or zflag = 0. The dim parameter is adjusted to give the correct number of degrees of freedom.

A 6—-component kinetic energy tensor is also calculated by this compute for use in the calculation of a
pressure tensor. The formula for the components of the tensor is the same as the above formula, except the
v/~2 is replaced by vx * vy for the xy component, etc.

The number of atoms contributing to the temperature is assumed to be constant for the duration of the run; 1
the dynamic option of the compute_modify command if this is not the case.

This compute subtracts out degrees—of-freedom due to fixes that constrain molecular motion, such as fix

shake and fix rigid. This means the temperature of groups of atoms that include these constraints will be
computed correctly. If needed, the subtracted degrees—of-freedom can be altered using the extra option of

compute _modify command.

Restrictions: none

Related commands:

compute temp, compute temp/region, compute pressure

Default: none

compute temp/partial command 149

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

compute temp/ramp command

Syntax:

compute ID group-ID temp/ramp vdim vlo vhi dim clo chi keyword value ...

« ID, group-ID are documented_in compute command

e temp/ramp = style name of this compute command

e vdim = vx or vy or vz

« vlo,vhi = subtract velocities between vilo and vhi (velocity units)
edim=xoryorz

« clo,chi = lower and upper bound of domain to subtract from (distance units)
 zero or more keyword/value pairs may be appended to the args

« keyword = units

units value = lattice or box

Examples:

temperature 2nd middle ramp vx 0 8 y 2 12 units lattice

Description:

Define a computation that calculates the temperature of a group of atoms, after subtracting out an imposed

velocity on the system before computing the kinetic energy. A compute of this style can be used by any
command that computes a temperature, e.g. thermo_maodify, fix temp/rescale, fix npt, etc.

The meaning of the arguments for this command is the same as_for the velocity ramp command which was
presumably used to impose the velocity.

The units keyword determines the meaning of the distance units used for coordinates (c1,c2) and velocities
(vlo,vhi). A box value selects standard distance units as defined_by the units command, e.g. Angstroms for
units = real or metal. A lattice value means the distance units are in lattice spacings; e.g. velocity = lattice
spacings / tau. The lattice command must have been previously used to define the lattice spacing.

A 6—component kinetic energy tensor is also calculated by this compute for use in the calculation of a
pressure tensor. The formula for the components of the tensor is the same as the above formula, except the
v/~2 is replaced by vx * vy for the xy component, etc.

The number of atoms contributing to the temperature is assumed to be constant for the duration of the run; 1
the dynamic option of the compute_modify command if this is not the case.

This compute subtracts out degrees—of-freedom due to fixes that constrain molecular motion, such as fix

shake and fix rigid. This means the temperature of groups of atoms that include these constraints will be
computed correctly. If needed, the subtracted degrees—of-freedom can be altered using the extra option of

compute _modify command.

Restrictions: none

compute temp/ramp command 150

http://lammps.sandia.gov

Related commands:
compute temp, compute temp/region, compute temp/deform, compute pressure
Default:

The option default is units = lattice.

compute temp/ramp command 151

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

compute temp/region command

Syntax:
compute ID group-ID temp/region region-ID

« ID, group-ID are documented_in compute command
 temp/region = style name of this compute command
« region—ID = ID of region to use for choosing atoms

Examples:

temperature mine flow region boundary
Description:

Define a computation that calculates the temperature of a group of atoms in a geometric region. This can be
useful for thermostatting one portion of the simulation box. E.g. a McDLT simulation where one side is
cooled, and the other side is heated. A compute of this style can be used by any command that computes a

temperature, e.g. thermo_modify, fix temp/rescale, etc.

Note that a region—style temperature can be used to thermostat with fix temp/rescale or fix langevin, but
should probably not be used with Nose/Hoover style fixes (fix nvt, fix npt, or fix nph), if the
degrees—of-freedom included in the computed T varies with time.

The temperature is calculated by the formula KE = dim/2 N k T, where KE = total kinetic energy of the groug
of atoms (sum of 1/2 m v*2), dim = 2 or 3 = dimensionality of the simulation, N = number of atoms in both
the group and region, k = Boltzmann constant, and T = temperature.

A 6—component kinetic energy tensor is also calculated by this compute for use in the computation of a
pressure tensor. The formula for the components of the tensor is the same as the above formula, except the
v/~2 is replaced by vx * vy for the xy component, etc.

The number of atoms contributing to the temperature is compute each time the temperature is evaluated sir
it is assumed atoms can enter/leave the region. Thus there is no need to use the dynamic option of the
compute_modify command for this compute style.

Unlike other compute styles that calculate temperature, this compute does NOT currently subtract out
degrees—of-freedom due to fixes that constrain molecular motion, such as fix shake and fix rigid. If needed
the subtracted degrees—of-freedom can be altered using the extra option of the compute modify command
Restrictions: none

Related commands:

compute temp. compute pressure

Default: none

compute temp/region command 152

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

compute variable command

Syntax:

compute ID group—-ID variable name
« ID, group-ID are documented_in compute command

« variable/atom = style name of this compute command
e name = variable name to invoke to compute a scalar quantity

Examples:

compute 1 all variable myTemp

Description:

Define a computation that calculates a formula that returns a scalar quantity. This quantity can be time
averaged and output via the fix ave/time command. It could also be output_via the thermo_style custom

command, although it makes more sense to access the variable directly in this case.

The formula is defined by the variable equal command. A variable of style equal can access properties of th
system, such as volume or temperature, and also reference individual atom attributes, such as its coordinat
or velocity.

For example, these 3 commands would time average the system density (assuming the volume fluctuates)
temperature and output the average value periodically to the file den.profile:

variable den equal div(atoms,vol)
compute density all variable den
fix 1 all ave/time 1 1000 density O den.profile

Restrictions: none
Related commands:

fix avel/time, variable

Default: none

compute variable command 153

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

compute variable/atom command

Syntax:

compute ID group-ID variable/atom name
« ID, group-ID are documented_in compute command
« variable/atom = style name of this compute command
* name = variable name to invoke for each atom

Examples:

compute 1 flow variable/atom myVar

Description:

Define a computation that calculates a formula for each atom in the group. The per—atom quantities can be
output via the dump custom command or spatially averaged via the fix ave/spatial command.

The formula is defined by the variable atom command. A variable of style atom can access properties of the
system, such as volume or temperature, and also reference individual atom attributes, such as its coordinat
or velocity.

For example, these 3 commands would compute the xy kinectic energy of atoms in the flow group and inclu
the values in dumped snapshots of the system.

variable xy atom mult(0.5,add(mult(vx[],vx[]),mult(vy[],vy[])))
compute ke flow variable/atom xy
dump 1 flow custom 1000 dump.flow tag type xy z ¢c_ke

If the dump line were replaced by

fix 1 flow ave/spatial 100 1000 z lower 2.0 ke.profile compute ke

then the xy kinetic energy values would be averaged by z layer and the layer averages written periodically t
the file ke.profile.

Restrictions: none
Related commands:

dump custom, fix ave/spatial

Default: none

compute variable/atom command 154

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

create_atoms command

Syntax:
create_atoms type style args keyword values ...

* type = atom type (1-Ntypes) of atoms to create
« style = box or region or single

box args = none
region args = region—ID
region-ID = atoms will only be created if contained in the region
single args =xy z
X,y,Z = coordinates of a single atom (distance units)
 zero or more keyword/value pairs may be appended to the args

« keyword = basis or units

basis values = M itype
M = which basis atom
itype = atom type (1-N) to assign to this basis atom
units value = lattice or box
lattice = the geometry is defined in lattice units
box = the geometry is defined in simulation box units

Examples:

create_atoms 1 box
create_atoms 3 region regsphere basis 2 3
create_atoms 3single 005

Description:

This command creates atoms on a lattice or a single atom as an alternative to reading in their coordinates v
read_data or read_restart command. A simulation box must already exist, which is typically created via the
create_box command. Before using this command, a lattice must also be defined using the lattice commanc
The only exception is for the single style with units = box.

For the box style, the create_atoms command fills the entire simulation box with atoms on the lattice. If your
box is periodic, you should insure its size is a multiple of the lattice spacings, to avoid unwanted atom overle
at the box boundaries.

For the region style, the geometric volume is filled that is inside the simulation box and is also consistent wit
the region volume. See the region command for details. Note that a region can be specified so that its
"volume" is either inside or outside a geometric boundary.

For the single style, a single atom is added to the system at the specified coordinates. This can be useful fol
debugging purposes or to create a tiny system with a handful of atoms at specified positions.

The basis keyword specifies an atom type that will be assigned to specific basis atoms as they are created.

the_lattice command for specifics on how basis atoms are defined for the unit cell of the lattice. By default, a
created atoms are assigned the argument type as their atom type.

create_atoms command 155

http://lammps.sandia.gov

The units keyword determines the meaning of the distance units used to specify the coordinates of the one
atom created by the single style. A box value selects standard distance units as defined by the units comma
e.g. Angstroms for units = real or metal. A lattice value means the distance units are in lattice spacings.

Note that this command adds atoms to those that already exist. By using the create_atoms command multif
times, multiple sets of atoms can be added to the simulation. For example, interleaving create_atoms with
lattice commands specifying different orientations, grain boundaries can be created. By using the
create_atoms command in conjunction with the delete_atoms command, reasonably complex geometries ce
be created. The create_atoms command can also be used to add atoms to a system previously read in from
data or restart file. In all these cases, care should be taken to insure that new atoms do not overlap existing
atoms inappropriately. The delete_atoms command can be used to handle overlaps.

Aside from their position and atom type, other properties of created atoms are set to 0.0, e.g velocity, charg
etc. These properties can be changed via the velocity or set commands.

Atom IDs are assigned to created atoms in the following way. The collection of created atoms are assigned
consecutive IDs that start immediately following the largest atom ID existing before the create_atoms
command was invoked. When a simulation is performed on different numbers of processors, there is no
guarantee a particular created atom will be assigned the same ID.

Restrictions:

An_atom_style must be previously defined to use this command.

Related commands:

lattice, reqgion, create_box, read_data, read_restart

Default: none

create_atoms command 156

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

create_box command
Syntax:
create_box N region—ID

« N = # of atom types to use in this simulation
« region—ID = ID of region to use as simulation domain

Examples:
create_box 2 mybox
Description:

This command creates a simulation box based on the specified region, Thus a region command must first b
used to define a geometric domain.

The argument N is the number of atom types that will be used in the simulation.

If the region is not of style prism, then LAMMPS encloses the region (block, sphere, etc) with an axis—aligne
(orthogonal) box which becomes the simulation domain.

If the region is of style prism, LAMMPS creates a nhon—orthogonal simulation domain shaped as a
parallelepiped with triclinic symmetry. See the region prism command for a description of how the shape of
the parallelepiped is defined. The parallelepiped has its "origin™" at (xlo,ylo,zlo) and 3 edge vectors starting
from its origin given by a = (xhi—xlo,0,0); b = (xy,yhi-ylo,0); ¢ = (xz,yz,zhi-zl0).

A prism region used with the create_box command must have tilt factors (xy,xz,yz) that do not skew the box
more than half the distance of the parallel box length. For example, if xlo = 2 and xhi = 12, then the x box
length is 10 and the xy tilt factor must be between -5 and 5. Similarly, both xz and yz must be between
—(xhi-xlo)/2 and +(yhi—ylo)/2. Note that this is not a limitation, since if the maximum tilt factor is 5 (as in

this example), then configurations with tilt = ..., =15, -5, 5, 15, 25, ... are all equivalent.

When a prism region is used, the simulation domain must be periodic in any dimensions with a non-zero tilt
factor, as defined by the boundary command. l.e. if the xy tilt factor is non-zero, then both the x and y
dimensions must be periodic. Similarly, x and z must be periodic if xz is non-zero and y and z must be
periodic if yz is non-zero.

Restrictions:

An_atom_style and region must have been previously defined to use this command.

Related commands:

create_atoms. region

Default: none

create_box command 157

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

delete_atoms command

Syntax:
delete_atoms style args
« style = group or region or overlap

group args = group-ID
region args = region—ID
overlap args = distance typel type2
distance = delete atoms with neighbors within this cutoff (distance units)
typel = type of first atom in pair (optional)
type2 = type of other atom in pair (optional)

Examples:

delete_atoms group edge
delete_atoms region sphere
delete_atoms overlap 0.3
delete_atoms overlap 0.3 11

Description:

Delete the specified atoms. This command can be used to carve out voids from a block of material or to dele
created atoms that are too close to each other (e.g. at a grain boundary).

For style group, all atoms belonging to the group are deleted.
For style region, all atoms in the region volume are deleted.

For style overlap, pairs of atoms within the specified cutoff distance are searched for, and one of the 2 atom
is deleted. If no atom types are specified, an atom will always be deleted if the cutoff criterion is met. If a
single atom type is specified, then one or both of the atoms in the pair must be of the specified type for a
deletion to occur. If two atom types are specified, the two atoms in the pair must be of the specified types fo
deletion to occur. For a given configuration of atoms, the only guarantee is that at the end of the deletion
operation, enough deletions will have occurred that no atom pairs within the cutoff (and with the specified
types) will remain. There is no guarantee that the minimum number of atoms will be deleted, or that the sam
atoms will be deleted when running on different numbers of processors.

After atoms are deleted, if the system is not molecular (no bonds), then atom IDs are re—assigned so that th
run from 1 to the number of atoms in the system. This is not done for molecular systems, since it would foul
up the bond connectivity that has already been assigned.

Restrictions:

The overlap style requires inter—processor communication to acquire ghost atoms and setup a neighbor list.

This means that your system must be ready to perform a simulation before using this command (force fields
setup, atom masses set, etc).

delete_atoms command 158

http://lammps.sandia.gov

If the_special_bonds command is used with a setting of 0, then a pair of bonded atoms (1-2, 1-3, or 1-4) wi
not appear in the neighbor list, and thus will not be considered for deletion by the overlap style. You probabl
don't want to be deleting one atom in a bonded pair anyway.

Related commands:

create_atoms

Default: none

delete_atoms command 159

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

delete_bonds command

Syntax:

delete_bonds group-ID style args keyword ...

e group—ID = group ID
« style = multi or atom or bond or angle or dihedral or improper or stats

multi args = none

atom args = an atom type
bond args = a bond type
angle args = an angle type
dihedral args = a dihedral type
improper args = an improper type
stats args = none

« zero or more keywords may be appended to the args

» keyword = undo or remove or special

Examples:

delete_bonds frozen multi remove
delete_bonds all atom 4 special
delete_bonds all stats

Description:

Turn off (or on) molecular topology interactions, i.e. bonds, angles, dihedrals, impropers. This command is
useful for deleting interactions that have been previously turned off by bond-breaking potentials. It is also
useful for turning off topology interactions between frozen or rigid atoms. Pairwise interactions can be turnec
off via the_neigh_modify exclude command. The fix shake command also effectively turns off certain bond
and angle interactions.

For all styles, an interaction is only turned off (or on) if all the atoms involved are in the specified group. For
style multi this is the only criterion applied — all types of bonds, angles, dihedrals, impropers in the group
turned off.

For style atom, one or more of the atoms involved must also be of the specified type. For style bond, only
bonds are candidates for turn—off, and the bond must be of the specified type. Styles angle, dihedral, and
improper are treated similarly.

For style bond, you can set the type to 0 to delete bonds that have been previously broken; e.g. see the
bond_style guartic command.

For style stats no interactions are turned off (or on); the status of all interactions in the specified group is
simply reported. This is useful for diagnostic purposes if bonds have been turned off by a bond-breaking
potential during a previous run.

The default behavior of the delete_bonds command is to turn off interactions by toggling their type to a
negative value. E.g. a bond_type of 2 is set to —2. The neighbor list creation routines will not include such ar

delete_bonds command 160

http://lammps.sandia.gov

interaction in their interaction lists. The default is also to not alter the list of 1-2, 1-3, 1-4 neighbors
computed by the special_bonds command and used to weight pairwise force and energy calculations. This
means that pairwise computations will proceed as if the bond (or angle, etc) were still turned on.

The keywords listed above can be appended to the argument list to alter the default behavior.

The undo keyword inverts the delete_bonds command so that the specified bonds, angles, etc are turned ol
they are currently turned off. This means any negative value is toggled to positive. Note that the fix shake
command also sets bond and angle types negative, so this option should not be used on those interactions.

The remove keyword is invoked at the end of the delete_bonds operation. It causes turned-off bonds (angle
etc) to be removed from each atom's data structure and then adjusts the global bond (angle, etc) counts
accordingly. Removal is a permanent change; removed bonds cannot be turned back on via the undo keywr
Removal does not alter the pairwise 1-2, 1-3, 1-4 weighting list.

The special keyword is invoked at the end of the delete_bonds operation, after (optional) removal. It
re—computes the pairwise 1-2, 1-3, 1-4 weighting list. The weighting list computation treats turned-off
bonds the same as turned—on. Thus, turned-off bonds must be removed if you wish to change the weightin
list.

Note that the choice of remove and special options affects how 1-2, 1-3, 1-4 pairwise interactions will be
computed across bonds that have been modified by the delete_bonds command.

Restrictions:

This command requires inter—processor communication to coordinate the deleting of bonds. This means tha
your system must be ready to perform a simulation before using this command (force fields setup, atom
masses set, etc).

If deleted bonds (angles, etc) are removed but the 1-2, 1-3, 1-4 weighting list is not recomputed, this can
cause a later fix shake command to fail due to an atom's bonds being inconsistent with the weighting list. Th
should only happen if the group used in the fix command includes both atoms in the bond, in which case yo
probably should be recomputing the weighting list.

Related commands:

neigh_modify exclude, special_bonds, fix shake

Default: none

delete_bonds command 161

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

dielectric command

Syntax:
dielectric value

« value = dielectric constant

Examples:

dielectric 2.0

Description:

Set the dielectric constant for Coulombic interactions (pairwise and long-range) to this value. The constant |
unitless, since it is used to reduce the strength of the interactions. The value is used in the denominator of tt
formulas for Coulombic interactions — e.g. a value of 4.0 reduces the Coulombic interactions to 25% of their
default strength. See the pair_style command for more details.

Restrictions: none

Related commands:

pair_style

Default:

dielectric 1.0

dielectric command 162

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

dihedral_style charmm command

Syntax:

dihedral_style charmm

Examples:

dihedral_style charmm
dihedral_coeff 1 120.0 1 60 0.5

Description:

The charmm dihedral style uses the potential
iy = /\-:l f cos(no 4/)]

See (MacKerell) for a description of the CHARMM force field. This dihedral style can also be used for the
AMBER force field (see the comment on weighting factors below). See (Cornell) for a description of the
AMBER force field.

The following coefficients must be defined for each dihedral type via the dihedral coeff command as in the
example above, or in the data file or restart files read by the read_data or read_restart commands:

* K (energy)

* n (integer >= 0)

« d (integer value of degrees)
* weighting factor (0.0 to 1.0)

The weighting factor is applied to pairwise interaction between the 1st and 4th atoms in the dihedral. Note tt
this weighting factor is unrelated to the weighting factor specified hy the special bonds command which
applies to all 1-4 interactions in the system.

For CHARMM force fields, the special_bonds 1-4 weighting factor should be set to 0.0. This is because the
pair styles that contain "charmm” (e.g. pair_style lj/charmm/coul/long) define extra 1-4 interaction
coefficients that are used by this dihedral style to compute those interactions explicitly. This means that if ar
of the weighting factors defined as dihedral coefficients (4th coeff above) are non-zero, then you must use ¢
charmm pair style. Note that if you do not set the special_bonds 1-4 weighting factor to 0.0 (which is the
default) then 1-4 interactions in dihedrals will be computed twice, once by the pair routine and once by the
dihedral routine, which is probably not what you want.

For AMBER force fields, the special_bonds 1-4 weighting factor should be set to the AMBER defaults (1/2
and 5/6) and all the dihedral weighting factors (4th coeff above) should be set to 0.0. In this case, you can u
any pair style you wish, since the dihedral does not need any 1-4 information.

Restrictions:

dihedral_style charmm command 163

http://lammps.sandia.gov

This dihedral style can only be used if LAMMPS was built with the "molecular" package (which it is by
default). See the Making LAMMPS section for more info on packages.

Related commands:
dihedral coeff

Default: none

(Cornell) Cornell, Cieplak, Bayly, Gould, Merz, Ferguson, Spellmeyer, Fox, Caldwell, Kollman, JACS 117,
5179-5197 (1995).

(MacKerell) MacKerell, Bashford, Bellott, Dunbrack, Evanseck, Field, Fischer, Gao, Guo, Ha, et al, J Phys
Chem, 102, 3586 (1998).

dihedral_style charmm command 164

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

dihedral_style class2 command
Syntax:
dihedral_style class2

Examples:

dihedral_style class2
dihedral_coeff 1 100 75 100 70 80 60

Description:

The class2 dihedral style uses the potential

E = Ei+ Enpt + Eeart + Eat + Eaat + Epa
FE; = Z K[l = cos(no — o,)]
n=1
Epwe = (rjp—r2)[A; cos(0) + Az cos(20) + Aj cos(30)]
Ege = (ry—m)Bycos(o) + B;cos(20) + B, cos(30)] 4
(rri — 73)[C cos(@) + C cos(20) + ('3 cos(30)]
Ean = (O —601)[Dycos(o) + Dy cos(20) + D3 cos(30)] 4
(00 — 02)[E) cos(o) + E; cos(20) + F;cos(30)]
Bow = M(8;5 — 6,)(8;1 — ;) cos(o)
Ewiz = N(riy—r1)(re —73a)

where Ed is the dihedral term, Embt is a middle—bond—torsion term, Eebt is an end—bond-torsion term, Eat
an angle-torsion term, Eaat is an angle—angle—torsion term, and Ebb13 is a bond-bond-13 term.

Thetal and theta2 are equilibrium angles and rl r2 r3 are equilibrium bond lengths.
See (Sun) for a description of the COMPASS class2 force field.

For this style, coefficients for the Ed formula can be specified in either the input script or data file. These are
the 6 coefficients:

« K1 (energy)
* phil (degrees)
* K2 (energy)
* phi2 (degrees)
« K3 (energy)
 phi3 (degrees)

Coefficients for all the other formulas can only be specified in the data file.

dihedral_style class2 command 165

http://lammps.sandia.gov

For the Embt formula, the coefficients are listed under a "MiddleBondTorsion Coeffs" heading and each line
lists 4 coefficients:

« Al (energy/distance)
» A2 (energy/distance)
» A3 (energy/distance)
* 12 (distance)

For the Eebt formula, the coefficients are listed under a "EndBondTorsion Coeffs" heading and each line list
8 coefficients:

* B1 (energy/distance)
» B2 (energy/distance)
» B3 (energy/distance)
» C1 (energy/distance)
» C2 (energy/distance)
» C3 (energy/distance)
« rl (distance)

« r3 (distance)

For the Eat formula, the coefficients are listed under a "AngleTorsion Coeffs" heading and each line lists 8
coefficients:

» D1 (energy/radian)
» D2 (energy/radian)
» D3 (energy/radian)
* E1 (energy/radian)
* E2 (energy/radian)
» E3 (energy/radian)
« thetal (degrees)

« theta2 (degrees)

Thetal and theta2 are specified in degrees, but LAMMPS converts them to radians internally; hence the uni
of D and E are in energy/radian.

For the Eaat formula, the coefficients are listed under a "AngleAngleTorsion Coeffs" heading and each line
lists 3 coefficients:

* M (energy/radian”2)
« thetal (degrees)
« theta2 (degrees)

Thetal and theta2 are specified in degrees, but LAMMPS converts them to radians internally; hence the uni
of M are in energy/radian”2.

For the Ebb13 formula, the coefficients are listed under a "BondBond13 Coeffs" heading and each line lists
coefficients:

* N (energyl/distance”?2)
« rl (distance)
« r3 (distance)

dihedral_style class2 command 166

Restrictions:

This dihedral style can only be used if LAMMPS was built with the "class2" package. See the Making
LAMMPS section for more info on packages.

Related commands:
dihedral coeff

Default: none

(Sun) Sun, J Phys Chem B 102, 7338-7364 (1998).

dihedral_style class2 command 167

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

dihedral_coeff command

Syntax:

dihedral_coeff N args

« N = dihedral type (see asterisk form below)
« args = coefficients for one or more dihedral types

Examples:

dihedral_coeff 1 80.01 3
dihedral_coeff*80.01 3 0.5
dihedral_coeff 2 80.0 1 3 0.5

Description:

Specify the dihedral force field coefficients for one or more dihedral types. The number and meaning of the
coefficients depends on the dihedral style. Dihedral coefficients can also be set in the data file read by the
read_data command or in a restart file.

N can be specified in one of two ways. An explicit numeric value can be used, as in the 1st example above.
a wild—card asterisk can be used to set the coefficients for multiple dihedral types. This takes the form "*" or
"*n" or "n*" or "m*n". If N = the number of dihedral types, then an asterisk with no numeric values means all
types from 1 to N. A leading asterisk means all types from 1 to n (inclusive). A trailing asterisk means all
types from n to N (inclusive). A middle asterisk means all types from m to n (inclusive).

Note that using a dihedral_coeff command can override a previous setting for the same dihedral type. For
example, these commands set the coeffs for all dihedral types, then overwrite the coeffs for just dihedral typ
2:

dihedral_coeff *80.01 3
dihedral_coeff 2 200.01 3

A line in a data file that specifies dihedral coefficients uses the exact same format as the arguments of the
dihedral_coeff command in an input script, except that wild—card asterisks should not be used since
coefficients for all N types must be listed in the file. For example, under the "Dihedral Coeffs" section of a
data file, the line that corresponds to the 1st example above would be listed as

180013

Here is an alphabetic list of dihedral styles defined in LAMMPS. Click on the style to display the formula it
computes and coefficients specified by the associated dihedral coeff command:

« dihedral_style none - turn off dihedral interactions
« dihedral_style hybrid — define multiple styles of dihedral interactions

« dihedral_style charmm - CHARMM dihedral
« dihedral_style class2 - COMPASS (class 2) dihedral

dihedral_coeff command 168

http://lammps.sandia.gov

« dihedral_style harmonic — harmonic dihedral

« dihedral_style helix — helix dihedral

« dihedral_style multi/harmonic — multi-harmonic dihedral
« dihedral_style opls — OPLS dihedral

Restrictions:

This command must come after the simulation box is defined by a read_data, read restart, or create_box
command.

A dihedral style must be defined before any dihedral coefficients are set, either in the input script or in a datz
file.

Related commands:

dihedral_style

Default: none

dihedral_coeff command 169

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

dihedral_style harmonic command
Syntax:
dihedral_style harmonic

Examples:

dihedral_style harmonic
dihedral_coeff 1 80.01 2

Description:

The harmonic dihedral style uses the potential
E = K[l + d cos(no)|

The following coefficients must be defined for each dihedral type via the dihedral coeff command as in the
example above, or in the data file or restart files read by the read_data or read_restart commands:

» K (energy)

ed(+1or-1)

* n (integer >= 0)
Restrictions:

This dihedral style can only be used if LAMMPS was built with the "molecular”" package (which it is by
default). See the Making LAMMPS section for more info on packages.

Related commands:
dihedral_coeff

Default: none

dihedral_style harmonic command 170

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

dihedral_style helix command
Syntax:
dihedral_style helix

Examples:

dihedral_style helix
dihedral_coeff 1 80.0 100.0 40.0

Description:

The helix dihedral style uses the potential

E = A[l = cos(0)] + B[l + cos(30)] + C[1 + cos(# 4 %;.J

This coarse—grain dihedral potential is described in (Guo). For dihedral angles in the helical region, the
energy function is represented by a standard potential consisting of three minima, one corresponding to the
trans (t) state and the other to gauche states (g+ and g-). The paper describes how the A,B,C parameters a
chosen so as to balance secondary (largely driven by local interactions) and tertiary structure (driven by
long-range interactions).

The following coefficients must be defined for each dihedral type via the dihedral coeff command as in the
example above, or in the data file or restart files read by the read_data or read_restart commands:

* A (energy)
* B (energy)
* C (energy)

Restrictions:

This dihedral style can only be used if LAMMPS was built with the "molecular”" package (which it is by
default). See the Making LAMMPS section for more info on packages.

Related commands:
dihedral_coeff

Default: none

(Guo) Guo and Thirumalai, Journal of Molecular Biology, 263, 323-43 (1996).

dihedral_style helix command 171

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

dihedral_style hybrid command
Syntax:
dihedral_style hybrid stylel style2 ...
« stylel,style2 = list of one or more dihedral styles

Examples:

dihedral_style hybrid harmonic helix
dihedral_coeff 1 harmonic 6.0 1 3
dihedral_coeff 2 helix 10 10 10

Description:

The hybrid style enables the use of multiple dihedral styles in one simulation. An dihedral style is assigned t
each dihedral type. For example, dihedrals in a polymer flow (of dihedral type 1) could be computed with a
harmonic potential and dihedrals in the wall boundary (of dihedral type 2) could be computed with a helix
potential. The assignment of dihedral type to style is made via the dihedral coeff command or in the data fils

In the dihedral_coeff command, the first coefficient sets the dihedral style and the remaining coefficients are
those appropriate to that style. In the example above, the 2 dihedral_coeff commands would set dihedrals o
dihedral type 1 to be computed with a harmonic potential with coefficients 80.0, 1.2 for K, d, n. Dihedral type
2 would be computed with a helix potential with coefficients 10.0, 10.0, 10.0 for A, B, C.

If the dihedral class2 potential is one of the hybrid styles, it requires additional MiddleBondTorsion,
EndBondTorsion, AngleTorsion, AngleAngleTorsion, and BondBond13 coefficients be specified in the data
file. These lines must also have an additional "class2" argument added after the dihedral type. For dihedral
types which are assigned to other hybrid styles, use the style name (e.g. "harmonic") appropriate to that sty!
The MiddleBondTorsion, etc coeffs for that dihedral type will then be ignored.

A dihedral style of none can be specified as an argument to dihedral_style hybrid and the corresponding
dihedral_coeff commands, if you desire to turn off certain dihedral types.

Restrictions:

This dihedral style can only be used if LAMMPS was built with the "molecular" package (which it is by
default). See the Making LAMMPS section for more info on packages.

Related commands:
dihedral coeff

Default: none

dihedral_style hybrid command 172

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

dihedral_style multi/harmonic command
Syntax:
dihedral_style multi/harmonic

Examples:

dihedral_style multi/harmonic
dihedral_coeff 1 20 20 20 20 20

Description:
The multi/harmonic dihedral style uses the potential

E = Z A, cos" (o)

n=15

The following coefficients must be defined for each dihedral type via the dihedral coeff command as in the
example above, or in the data file or restart files read by the read data or read restart commands:

« Al (energy)
* A2 (energy)
« A3 (energy)
* A4 (energy)
« A5 (energy)
Restrictions:

This dihedral style can only be used if LAMMPS was built with the "molecular" package (which it is by
default). See the Making LAMMPS section for more info on packages.

Related commands:
dihedral_coeff

Default: none

dihedral_style multi/harmonic command 173

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

dihedral_style none command
Syntax:
dihedral_style none

Examples:

dihedral_style none
Description:

Using an dihedral style of none means dihedral forces are not computed, even if quadruplets of dihedral ato
were listed in the data file read by the read_data command.

Restrictions: none
Related commands: none

Default: none

dihedral_style none command 174

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

dihedral_style opls command
Syntax:
dihedral_style opls

Examples:

dihedral_style opls
dihedral_coeff 1 90.0 90.0 90.0 70.0

Description:

The opls dihedral style uses the potential

-~ - WA | — R \
E = K[l +cos(9)]+ 5 K5l —cos(20)] + S K[l + cos(30)] + - K[l —cos(40)]

Note that the usual 1/2 factor is not included in the K values.
This dihedral potential is used in the OPLS force field and is described in (Watkins).

The following coefficients must be defined for each dihedral type via the dihedral coeff command as in the
example above, or in the data file or restart files read hy the read_data or read restart commands:

* K1 (energy)
* K2 (energy)
* K3 (energy)
* K4 (energy)
Restrictions:

This dihedral style can only be used if LAMMPS was built with the "molecular” package (which it is by
default). See the Making LAMMPS section for more info on packages.

Related commands:
dihedral coeff

Default: none

(Watkins) Watkins and Jorgensen, J Phys Chem A, 105, 4118-4125 (2001).

dihedral_style opls command 175

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

dihedral_style command

Syntax:

dihedral_style style
« style = none or hybrid or charmm or class2 or harmonic or helix or multi/harmonic or opls

Examples:

dihedral_style harmonic
dihedral_style multi/harmonic
dihedral_style hybrid harmonic charmm

Description:

Set the formula(s) LAMMPS uses to compute dihedral interactions between quadruplets of atoms, which
remain in force for the duration of the simulation. The list of dihedral quadruplets is read in by a read_data o
read_restart command from a data or restart file.

Hybrid models where dihedrals are computed using different dihedral potentials can be setup using the hybr
dihedral style.

The coefficients associated with a dihedral style can be specified in a data or restart file or via the
dihedral_coeff command.

All dihedral potentials store their coefficient data in binary restart files which means dihedral_style and
dihedral_coeff commands do not need to be re—specified in an input script that restarts a simulation. See th
read_restart command for details on how to do this. The one exception is that dihedral_style hybrid only
stores the list of sub-styles in the restart file; dihedral coefficients need to be re-specified.

IMPORTANT NOTE: When both a dihedral and pair style is defined, the special bonds command often
needs to be used to turn off (or weight) the pairwise interaction that would otherwise exist between 4 bonde
atoms.

In the formulas listed for each dihedral style, phi is the torsional angle defined by the quadruplet of atoms.

Here are some important points to take note of when defining the LAMMPS dihedral coefficients in the
formulas that follow so that they are compatible with other force fields:

« The LAMMPS convention is that the trans position = 180 degrees, while in some force fields trans =
0 degrees.

« Some force fields reverse the sign convention on d.

« Some force fields divide/multiply K by the number of multiple torsions that contain the j—k bond in an
i—j—k-I torsion.

« Some force fields let n be positive or negative which corresponds to d = 1 or —1 for the harmonic
style.

dihedral_style command 176

http://lammps.sandia.gov

Here is an alphabetic list of dihedral styles defined in LAMMPS. Click on the style to display the formula it
computes and coefficients specified by the associated dihedral coeff command:

« dihedral_style none - turn off dihedral interactions
« dihedral_style hybrid — define multiple styles of dihedral interactions

« dihedral_style charmm - CHARMM dihedral

« dihedral_style class2 — COMPASS (class 2) dihedral

« dihedral_style harmonic — harmonic dihedral

« dihedral_style helix — helix dihedral

« dihedral_style multi/harmonic — multi-harmonic dihedral
« dihedral_style opls — OPLS dihedral

Restrictions:

Dihedral styles can only be set for atom styles that allow dihedrals to be defined.

Most dihedral styles are part of the "molecular” package. They are only enabled if LAMMPS was built with
that package. See the Making LAMMPS section for more info on packages. The doc pages for individual
dihedral potentials tell if it is part of a package.

Related commands:

dihedral_coeff

Default:

dihedral_style none

dihedral_style command 177

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

dimension command

Syntax:
dimension N
*N=2o0r3
Examples:
dimension 2
Description:
Set the dimensionality of the simulation. By default LAMMPS runs 3d simulations. To run a 2d simulation,
this command should be used prior to setting up a simulation box via the create_box or read _data commant
Restart files also store this setting.
See the discussion_in this section for additional instructions on how to run 2d simulations.
Restrictions:
This command must be used before the simulation box is defined by a read_data or create_box command.
Related commands:

fix enforce2d

Default:

dimension 3

dimension command 178

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

dipole command

Syntax:
dipole I value

« | = atom type (see asterisk form below)
« value = dipole moment (dipole units)

Examples:

dipole 1 1.0
dipole 3 2.0
dipole 3*5 0.0

Description:

Set the dipole moment for all atoms of one or more atom types. This command is only used for atom styles
that require dipole moments (atom_style dipole). A value of 0.0 should be used if the atom type has no dipo
moment. Dipole values can also be set in the read data data file. See the units command for a discussion o
dipole units.

Currently, only atom_style dipole requires dipole moments be set.

| can be specified in one of two ways. An explicit numeric value can be used, as in the 1st example above. (
a wild—card asterisk can be used to set the dipole moment for multiple atom types. This takes the form "*" ol
"n" or "n*" or "m*n". If N = the number of atom types, then an asterisk with no numeric values means all
types from 1 to N. A leading asterisk means all types from 1 to n (inclusive). A trailing asterisk means all
types from n to N (inclusive). A middle asterisk means all types from m to n (inclusive).

A line in a data file that specifies a dipole moment uses the same format as the arguments of the dipole
command in an input script, except that no wild—card asterisk can be used. For example, under the "Dipoles
section of a data file, the line that corresponds to the 1st example above would be listed as

11.0

Restrictions:

This command must come after the simulation box is defined by a read_data, read restart, or create_box
command.

All dipoles moments must be defined before a simulation is run (if the atom style requires dipoles be set).
They must also all be defined before a set dipagle or set dipole/random command is used.

Related commands: none

Default: none

dipole command 179

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

displace_atoms command

Syntax:

displace_atoms group—ID style args keyword value ...

e group—ID = ID of group of atoms to displace
« style = move or ramp or random

move args = delx dely delz
delx,dely,delz = distance to displace in each dimension (distance units)
ramp args = ddim dlo dhi dim clo chi
ddim=xoryorz
dlo,dhi = displacement distance between dlo and dhi (distance units)
dim=xoryorz
clo,chi = lower and upper bound of domain to displace (distance units)
random args = dx dy dz seed
dx,dy,dz = random displacement magnitude in each dimension (distance units)
seed = random # seed (8 digits or less)

 zero or more keyword/value pairs may be appended to the args

keyword = units
value = box or lattice

Examples:

displace_atoms top move 0 -5 0 units box
displace_atoms flow ramp x 0.0 5.0 y 2.0 20.5

Description:

Displace a group of atoms. This can be used to move atoms a large distance before beginning a simulation
to randomize atoms initially on a lattice. For example, in a shear simulation, an initial strain can be imposed
on the system. Or two groups of atoms can be brought into closer proximity.

The move style displaces the group of atoms by the specified 3d distance.

The ramp style displaces atoms a variable amount in one dimension depending on the atom's coordinate in
(possibly) different dimension. For example, the second example command displaces atoms in the x—directi
an amount between 0.0 and 5.0 distance units. Each atom's displacement depends on the fractional distanc
y coordinate is between 2.0 and 20.5. Atoms with y—coordinates outside those bounds will be moved the
minimum (0.0) or maximum (5.0) amount.

The random style independently moves each atom in the group by a random displacement, uniformly sampl
from a value between —dx and +dx in the x dimension, and similarly for y and z. Random numbers are used
such a way that the displacement of a particular atom is the same, regardless of how many processors are

being used.

Distance units for displacement are determined by the setting of box or lattice for the units keyword. Box
means distance units as defined by the units command — e.g. Angstroms for real units. Lattice means distar
units are in lattice spacings. The lattice command must have been previously used to define the lattice

displace_atoms command 180

http://lammps.sandia.gov

spacing.

Care should be taken not to move atoms on top of other atoms. After the move, atoms are remapped into th
periodic simulation box if needed.

Atoms can be moved arbitrarily long distances by this command. However if the box is non—periodic, this ca
change the shape of the simulation box. This is not a problem, except that the mapping of processors to the
simulation box is not changed from its initial 3d configuration by this command; see the processors comman
Thus, if the box shape changes dramatically, the simulation may not be as well load—balanced (atoms per
processor) as the initial mapping tried to achieve.

Restrictions:

This command requires inter—processor communication to migrate atoms once they have been displaced. T
means that your system must be ready to perform a simulation before using this command (force fields are
setup, atom masses are set, etc).

Related commands:

lattice

Default:

The option defaults are units = lattice.

displace_atoms command 181

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

dump command

Syntax:

dump ID group-ID style N file args

« ID = user—assigned name for the dump

« group—ID = ID of the group of atoms to be dumped
« style = atom or bond or dcd or xtc or xyz or custom
* N = dump every this many timesteps

« file = name of file to write dump info to

« args = list of arguments for a particular style

atom args = none
bond args = none
dcd args = none
xtc args = precision (optional)
precision = power—of-10 value from 10 to 1000000 (default = 1000)
Xyz args = none
custom args = list of atom attributes
possible attributes = tag, mol, type,
X, Y, Z, XS, ¥S, ZS, XU, YU, zZU, ix, iy, iz,
VX, vy, vz, fx, fy, fz,
g, mux, muy, muz,
quatw, quati, quatj, quatk, tgx, tqy, tqz,
epair, ke, etotal, centro,
SXX, SYY, SZZ, SXY, SXZ, Syz,
c_ID, c_IDI[N]
tag = atom ID
mol = molecule ID
type = atom type
X,Y,Z = unscaled atom coordinates
Xs,ys,zs = scaled atom coordinates
Xu,yu,zu = unwrapped atom coordinates
ix,iy,iz = box image that the atom is in
vX,vy,vz = atom velocities
fx,fy,fz = forces on atoms
g = atom charge
mux,muy,muz = orientation of dipolar atom
quatw,quati,quatj,quatk = quaternion components for aspherical particles
tgx,tqy,tgz = torque on aspherical particles
epair = per—atom pairwise energy
ke = per—atom kinetic energy
etotal = per—atom total energy (ke + epair)
centro = per—atom centro—symmetry parameter
SXX, SYY, $ZZ, SXy, SXZ, Syz = per—atom stress tensor components
c_ID = scalar per—atom quantity calculated by a compute identified by its ID
c_ID[N] = Nth per—atom vector quantity calculated by a compute identified by its ID

Examples:

dump myDump all atom 100 dump.atom

dump 2 subgroup atom 50 dump.run.bin

dump 4a all custom 100 dump.myforce.* tag type x y vx fx

dump 4b flow custom 100 dump.%.myforce tag type epair sxx syy szz ¢_myF[3]
dump 1 all xtc 1000 file.xtc 100.0

dump command

182

http://lammps.sandia.gov

Description:

Dump a snapshot of atom quantities to one or more files every N timesteps in one of several styles. As
described below, the filename determines the kind of output (text or binary or gzipped, one big file or one pe
timestep, one big file or one per processor). Only information for atoms in the specified group is dumped. Tt
dump_modify command can also alter what atoms are included. Not all styles support all these options; see
details below.

Note that because periodic boundary conditions are enforced only on timesteps when neighbor lists are rebi
the coordinates of an atom written to a dump file may be slightly outside the simulation box.

Also note that when LAMMPS is running in parallel, the atom information written to dump files (typically

one line per atom) may be written in an indeterminate order. This is because data for a single snapshot is
collected from multiple processors. This is always the case for the atom, bond, and custom styles. It is also
case for the xyz style if the dump group is not all. It is not the case for the dcd and xtc styles which always
write atoms in sorted order. So does the xyz style if the dump group is all.

The style keyword determines what atom quantities are written to the file and in what format. Settings made
via the_ dump_maodify command can also alter the format of individual values and the file itself.

The atom, bond, and custom styles create files in a simple text format that is self-explanatory when viewing
dump file. Many of the LAMMPS post—processing tools, including Pizza.py, work with this format.

For style atom, atom coordinates are written to the file, along with the atom ID and atom type. By default,
atom coords are written in a scaled format (from 0 to 1). l.e. an x value of 0.25 means the atom is at a locati
1/4 of the distance from xlo to xhi of the box boundaries. The format can be changed to unscaled coords via
the_ dump_modify settings. Image flags can also be added for each atom via dump_maodify.

For style bond, the bond topology between atoms is written, in the same format specified in data files read ir
by the read_data command. Both atoms in the bond must be in the dump group for the bond to be written.
Any bonds that have been broken (see the bond_style command) by setting their bond type to 0 are not
written. Bonds that have been turned off (see_the fix shake or delete bonds commands) by setting their bon
type negative are written into the file.

Style custom allows you to specify a list of atom attributes to be written to the dump file for each atom.
Possible attributes are listed above and will appear in the order specified. Be careful not to specify a quantit
that is not defined for a particular simulation — such as g for atom style bond, since that atom style doesn't
assign charges. Dumps occur at the very end of a timestep, so atom attributes will include effects due to fixe
that are applied during the timestep. An explanation of some of the dump custom quantities is given below.

The dcd style writes DCD files, a standard atomic trajectory format used by the CHARMM, NAMD, and
XPlor molecular dynamics packages. DCD files are binary and thus may not be portable to different
machines. The dump group must be all for the dcd style.

The xtc style writes XTC files, a compressed trajectory format used by the GROMACS molecular dynamics

package, and descrihed here. The precision used in XTC files can be specified; for example, a value of 100
means that coordinates are stored to 1/100 nanometer accuracy. XTC files are portable binary files written i
the NFS XDR data format, so that any machine which supports XDR should be able to read them. The dum,
group must be all for the xtc style.

The xyz style writes XYZ files, which is a simple text—based coordinate format that many codes can read.

dump command 183

http://www.cs.sandia.gov/~sjplimp/pizza.html
http://www.gromacs.org/documentation/reference_3.3/online/xtc.html

Note that DCD, XTC, and XYZ formatted files can be read directly by VMD (a popular molecular viewing
program). We are told VMD will also read LAMMPS atom style dump files since someone has added a
LAMMPS format plug—in to VMD. It may require an initial snapshot from an XYZ formatted file to get
started.

Dumps are performed on timesteps that are a multiple of N (including timestep 0) and on the last timestep o
minimization if the minimization converges. N can be changed between runs by using the dump modify
command (not allowed for dcd style).

The specified filename determines how the dump file(s) is written. The default is to write one large text file,
which is opened when the dump command is invoked and closed when an undump command is used or wh
LAMMPS exits. For the dcd and xtc styles, this is a single large binary file.

Dump filenames can contain two wild—card characters. If a "*" character appears in the filename, then one fi
per snapshot is written and the "*" character is replaced with the timestep value. For example, tmp.dump.*
becomes tmp.dump.0, tmp.dump.10000, tmp.dump.20000, etc. This option is not available for the dcd and x
styles.

If a "%" character appears in the filename, then one file is written for each processor and the "%" character |
replaced with the processor ID from 0 to P-1. For example, tmp.dump.% becomes tmp.dump.0, tmp.dump.!
... tmp.dump.P-1, etc. This creates smaller files and can be a fast mode of output on parallel machines that
support parallel I/O for output. This option is not available for the dcd, xtc, and xyz styles.

Note that the "*" and "%" characters can be used together to produce a large number of small dump files!

If the filename ends with ".bin", the dump file (or files, if "*" or "%" is also used) is written in binary format.

A binary dump file will be about the same size as a text version, but will typically write out much faster. Of
course, when post—processing, you will need to convert it back to text format (see the binary2txt tool) or writ
your own code to read the binary file. The format of the binary file can be understood by looking at the
tools/binary2txt.cpp file. This option is only available for the atom and custom styles.

If the filename ends with ".gz", the dump file (or files, if "*" or "%" is also used) is written in gzipped format.
A gzipped dump file will be about 3x smaller than the text version, but will also take longer to write. This
option is not available for the dcd and xtc styles.

This section explains the atom quantities that can be specified as part of the custom style.

The tag, mol, type, X, y, z, vx, vy, vz, fx, fy, fz, g keywords are self-explanatory. Tag is the atom ID. Mol is tt
molecule 1D, included in the data file for molecular systems. The X, y, z keywords write atom coordinates
"unscaled", in the appropriate distance units (Angstroms, sigma, etc). Use xs, ys, zs if you want the
coordinates "scaled" to the box size, so that each value is 0.0 to 1.0. Use xu, yu, zu if you want the coordina
"unwrapped" by the image flags for each atom. Unwrapped means that if the atom has passed thru a period
boundary one or more times, the value is printed for what the coordinate would be if it had not been wrappe:
back into the periodic box. Note that using xu, yu, zu means that the coordinate values may be far outside tt
box size printed with the snapshot. The image flags can be printed directly using the ix, iy, iz keywords. The
dump_modify command describes in more detail what is meant by scaled vs unscaled coordinates and the
image flags.

The mux, muy, muz keywords are specific to dipolar systems defined with an atom style of dipole. They give
the orientation of the atom's dipole.

dump command 184

http://www.ks.uiuc.edu/Research/vmd

The quatw, quati, quatj, quatk, tgx, tqy, tqz keywords are specific to aspherical particles defined with an ator
style of ellipsoid. The first 4 are the components of the quaternion that define the orientiation of the particle.
The final 3 give the rotational torque on the particle.

The epair, ke, etotal, centro, and sxx, etc keywords print the pairwise energy, kinetic energy, total energy
(pairwise + kinetic), centro—symmetry parameter, and components of the per—-atom stress tensor for each
atom. These quantities are calculated by computes that the dump defines, as if these commands had been
issued:

compute dump-ID_epair/atom group-ID epair/atom
compute dump-ID_ke/atom group-ID ke/atom
compute dump-ID_etotal/atom group—-ID etotal/atom
compute dump-ID_centro/atom group—ID centro/atom
compute dump-ID_stress/atom group—ID stress/atom

See the corresponding compute style commands for details on what is computed for each atom. Note that t
ID of each new compute is the dump—ID with the compute style appended (with an underscore). The group
for each new compute is the same as the dump group.

Note that the etotal keyword does not include energy contributions due to bonds, angles, etc that the atom i
part of.

The sxXx, syy, szz, sxy, sxz, syz keywords access the 6 components of the stress tensor calculated for each
by the compute stress/atom style.

The c_ID and c_ID[N] keywords allow scalar or vector per—atom quantities calculated by a compute to be
output. The ID in the keyword should be replaced by the actual ID of the compute that has been defined
elsewhere in the input script. See_the compute command for details. Note that scalar and vector quantities tl
are not calculated on a per—atom basis (e.g. global temperature or pressure) cannot be output in a dump.
Rather, these quantities are output by the thermo_style custom command.

If ¢c_ID is used as a keyword, then the scalar per—-atom quantity calculated by the compute is printed. If
c_ID[N] is used, then N in the range from 1-M will print the Nth component of the M—length per-atom
vector calculated by the compute.

See this section for information on how to add new compute styles to LAMMPS that calculate per—atom
guantities which could then be output with these keywords.

Restrictions:

Scaled coordinates cannot be writted to dump files when the simulation box is triclinic (non—orthogonal).
Note that this is the default for dump style atom;_the dump_modify command must be used to change it. The
exception is DCD files which store the tilt factors for subsequent visualization by programs like VMD.

To write gzipped dump files, you must compile LAMMPS with the —DGZIP option — see the Making
LAMMPS section of the documentation.

The bond style is part of the "molecular" package. It is only enabled if LAMMPS was built with that package.
See the Making LAMMPS section for more info.

The xtc style is part of the "xtc" package. It is only enabled if LAMMPS was built with that package. See the

dump command 185

http://www.ks.uiuc.edu/Research/vmd

Making LAMMPS section for more info. This is because some machines may not support the lo—-level XDR
data format that XTC files are written with, which will result in a compile-time error when a lo-level include

file is not found. Putting this style in a package makes it easy to exclude from a LAMMPS build for those
machines.

Granular systems and granular pair potentials cannot be used to compute per—atom energy and_stress. The
gran/diag command should be used instead.

Related commands:

dump_modify, undump

Default: none

dump command 186

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

dump_modify command

Syntax:
dump_maodify dump-ID keyword args ...

e dump-ID = ID of dump to modify
< one or more keyword/arg pairs may be appended
« keyword = format or scale or image or header or flush or region or thresh

format arg = C-style format string for one line of output
scale arg = yes or no
image arg = yes or no
flush arg = yes or no
every arg = N
N = dump every this many timesteps
region arg = region—ID or "none"
thresh args = attribute operation value
attribute = same attributes (x,fy,etotal,sxx,etc) used by dump custom style
operation =" or ">=" or "=="or "1="
value = numeric value to compare to
these 3 args can be replaced by the word "none" to turn off threshholding

Examples:

dump_modify 1 format "%d %d %20.15g %g %g" scale yes
dump_maodify myDump image yes scale no flush yes
dump_modify 1 region mySphere thresh x <0.0 thresh epair >= 3.2

Description:

Modify the parameters of a previously defined dump command. Not all parameters are relevant to all dump
styles.

The text—-based dump styles have a default C—-style format string which simply specifies %d for integers anc
%g for real values. The format keyword can be used to override the default with a new C-style format string
Do not include a trailing "\n" newline character in the format string. This option has no effect on the dcd and
xtc dump styles since they write binary files.

The scale and image keywords apply only to the dump atom style. A scale value of yes means atom coords
written in normalized units from 0.0 to 1.0 in each box dimension. A value of no means they are written in
absolute distance units (e.g. Angstroms or sigma). If the image value is yes, 3 flags are appended to each
atom's coords which are the absolute box image of the atom in each dimension. For example, an x image fl:
of —2 with a normalized coord of 0.5 means the atom is in the center of the box, but has passed thru the box
boundary 2 times and is really 2 box lengths to the left of its current coordinate. Note that for dump style
custom these values can be printed in the dump file by using the appropriate atom attributes in the dump
command itself.

The flush option determines whether a flush operation in invoked after a dump snapshot is written to the dur
file. A flush insures the output in that file is current (no buffering by the OS), even if LAMMPS halts before

dump_modify command 187

http://lammps.sandia.gov

the simulation completes. Flushes cannot be performed with dump style xtc.

The every option changes the dump frequency originally specified by the dump command to a new value
which must be > 0. The dump frequency cannot be changed for the dump dcd style.

The region keyword only applies to the dump custom style. If specified, only atoms in the region will be
written to the dump file. Only one region can be applied as a filter (the last one specified). See the region
command for more details. Note that a region can be defined as the "inside" or "outside" of a geometric sha
and it can be the "union" or "intersection" of a series of simpler regions.

The thresh keyword only applies to the dump custom style. Multiple threshholds can be specified. Specifyinc
"none" turns off all threshhold criteria. If theshholds are specified, only atoms whose attributes meet all the
threshhold criteria are written to the dump file. The possible attributes that can be tested for are the same as
those that can be specified in the dump custom command. Note that different attributes can be output by the
dump custom command than are used as threshhold criteria by the dump_modify command. E.g. you can
output the coordinates and stress of atoms whose energy is above some threshhold.

Restrictions: none
Related commands:

dump, undump

Default:

The option defaults are format = %d and %g for each integer or floating point value, scale = yes, image = nc
flush = yes (except for dump xtc style), region = none, and thresh = none.

dump_modify command 188

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

echo command
Syntax:
echo style
« style = none or screen or log or both

Examples:

echo both
echo log

Description:

This command determines whether LAMMPS echoes each input script command to the screen and/or log fi
as it is read and processed. If an input script has errors, it can be useful to look at echoed output to see the
command processed.

Restrictions: none

Related commands: none

Default:

echo log

echo command 189

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

fix command

Syntax:
fix ID group—-ID style args

« ID = user—assigned name for the fix

« group—ID = ID of the group of atoms to apply the fix to

« style = one of a long list of possible style names (see below)
 args = arguments used by a particular style

Examples:

fix 1 all nve
fix 3 all nvt 300.0 300.0 0.01
fix mine top setforce 0.0 NULL 0.0

Description:

Set a fix that will be applied to a group of atoms. In LAMMPS, a "fix" is any operation that is applied to the
system during timestepping or minimization. Examples include updating of atom positions and velocities due
to time integration, controlling temperature, applying constraint forces to atoms, enforcing boundary
conditions, computing diagnostics, etc. There are dozens of fixes defined in LAMMPS and new ones can be
added - see this section for a discussion.

Each fix style has its own documentation page which describes its arguments and what it does, as listed
below.

Fixes perform their operations at different stages of the timestep. If 2 or more fixes both operate at the same
stage of the timestep, they are invoked in the order they were specified in the input script.

Fixes can be deleted with the unfix command. Note that this is the only way to turn off a fix; simply
specifying a new fix with a similar style will not turn off the first one. For example, using a fix nve command
for a second run after using a fix nvt command for the first run, will not cancel out the NVT time integration
invoked by the "fix nvt" command. Thus two time integrators would be in place!

If you specify a new fix with the same ID and style as an existing fix, the old fix is deleted and the new one is
created (presumably with new settings). This is the same as if an "unfix" command were first performed on
the old fix, except that the new fix is kept in the same order relative to the existing fixes as the old one
originally was. Note that this operation also wipes out any additional changes made to the old fix via the

fix_modify command.

The fix modify command allows settings for some fixes to be reset. See the doc page for individual fixes for
details.

Some fixes store an internal "state" which is written to binary restart files via the restart or write restart
commands. This allows the fix to continue on with its calculations in a restarted simulation. See the
read_restart command for info on how to re—specify a fix in an input script that reads a restart file. See the d
pages for individual fixes for info on which ones can be restarted.

fix command 190

http://lammps.sandia.gov

Here is an alphabetic list of fix styles available in LAMMPS:

» fix addforce — add a force to each atom

« fix aveforce — add an averaged force to each atom

« fix ave/spatial — output per—atom quantities by layer

« fix ave/time — output time—averaged compute quantities

« fix com - compute a center—of-mass

« fix deform - change the simulation box size/shape

» fix deposit — add new atoms above a surface

« fix drag — drag atoms towards a defined coordinate

« fix efield — impose electric field on system

« fix enforce2d — zero out z—dimension velocity and force

« fix freeze — freeze atoms in a granular simulation

« fix gran/diag — compute granular diagnostics

« fix gravity — add gravity to atoms in a granular simulation

« fix gyration — compute radius of gyration

« fix indent — impose force due to an indenter

« fix langevin — Langevin temperature control

« fix lineforce — constrain atoms to move in a line

« fix msd - compute mean-squared displacement (i.e. diffusion coefficient)
« fix momentum - zero the linear and/or angular momentum of a group of atoms
« fix nph — constant NPH time integration via Nose/Hoover

« fix npt — constant NPT time integration via Nose/Hoover

« fix npt/asphere — NPT for aspherical particles

« fix nve — constant NVE time integration

« fix nve/asphere — NVT for aspherical particles

« fix nve/dipole — NVE for point dipolar particles

« fix nve/gran — NVE for granular particles

« fix nve/noforce — NVE without forces (v only)

« fix nvt — constant NVT time integration via Nose/Hoover

« fix nvt/asphere — NVT for aspherical particles

« fix nvt/sllod — NVT for NEMD with SLLOD equations

« fix orient/fcc — add grain boundary migration force

« fix planeforce — constrain atoms to move in a plane

« fix poems - constrain clusters of atoms to move as coupled rigid bodies
« fix pour — pour new atoms into a granular simulation domain

« fix print — print text and variables during a simulation

« fix rdf — compute radial distribution functions

« fix recenter — constrain the center—of-mass position of a group of atoms
« fix rigid — constrain one or more clusters of atoms to move as a rigid body
» fix setforce — set the force on each atom

« fix shake — SHAKE constraints on bonds and/or angles

« fix spring — apply harmonic spring force to group of atoms

« fix spring/rg — spring on radius of gyration of group of atoms

« fix spring/self — spring from each atom to its origin

« fix temp/rescale — temperature control by velocity rescaling

« fix tmd — guide a group of atoms to a new configuration

« fix viscous - viscous damping for granular simulations

« fix wall/gran - frictional wall(s) for granular simulations

« fix wall/lj126 — Lennard—Jones 12-6 wall

« fix wall/lj93 — Lennard—Jones 9-3 wall

fix command 191

« fix wall/reflect - reflecting wall(s)
« fix wiggle - oscillate walls and frozen atoms

Restrictions:

Some fix styles are part of specific packages. They are only enabled if LAMMPS was built with that package
See the Making LAMMPS section for more info on packages. The doc pages for individual fixes tell if it is
part of a package.

Related commands:

unfix,_fix_modify

Default: none

fix command 192

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

fix addforce command

Syntax:

fix ID group—ID addforce fx fy fz
« ID, group-ID are documented_in fix command
 addforce = style name of this fix command

« fx,fy,fz = force component values (force units)

Examples:

fix kick flow addforce 1.0 0.0 0.0
Description:

Add fx,fy,fz to the corresponding component of force for each atom in the group. This command can be use
to give an additional push to atoms in a simulation, such as for a simulation of Poiseuille flow in a channel.

Restart, fix_modify, thermo output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix. No quantities calculated by this fix can be output by the thermo_style custom command. No
parameter of this fix can be used with the start/stop keywords of the run command.

The forces due to this fix are imposed during an energy minimization, invoked_by the minimize command.
Restrictions: none

Related commands:

fix setforce, fix aveforce

Default: none

fix addforce command 193

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

fix ave/spatial command

Syntax:
fix ID group—ID ave/spatial Nevery Nfreq dim origin delta file style args keyword value ...

« ID, group-ID are documented_in fix command

 ave/spatial = style name of this fix command

* Nevery = calculate property every this many timesteps

« Nfreq = write average property to file every this many steps
edim=xoryorz

« origin = lower or center or upper or coordinate value (distance units)
« delta = thickness of spatial layers in dim (distance units)

« file = filename to write results to

« style = density or atom or compute

density arg = mass or number
mass = compute mass density
number = compute number density
atom arg = vx or vy or vz or fx or fy or fz
compute arg = compute-ID that calculates per—atom quantities

 zero or more keyword/value pairs may be appended to the args

keyword = norm or units
norm value = all or sample
units value = box or lattice

Examples:

fix 1 all ave/spatial 10000 10000 z lower 2.0 centro.profile compute myCentro
fix 1 flow ave/spatial 100 1000 y 0.0 1.0 vel.profile atom vx norm sample
fix 1 flow ave/spatial 100 1000 y 0.0 1.0 dens.profile density mass

Description:

Calculate one or more instantaneous per—atom quantities every few timesteps, average them by layer in a
chosen dimension and over a longer timescale, and print the results to a file. This can be used to spatially
average per—atom properties such as velocity or energy or a quantity calculated by an equation you define;
the_variable atom command.

The density styles means to simply count the number of atoms in each layer, either by mass or number. The
atom style allows an atom property such as x—velocity to be specified. The compute style allows specificatio
of a_compute which will be invoked to calculate the desired property. The compute can be previously define
in the input script. Note that the "compute variable/atom" style allows you to calculate any quantity for an
atom that can be specified by a variable atom equation. Users can also write code for their own compute sty
and add them to LAMMPS. Note that the dump custom command can also be used to output per—atom
guantities calculated by a compute.

For the compute style, the fix ave/spatial style uses the per—atom scalar or vector calculated by the compute
See the fix ave/time command if you wish to time—average a global quantity, e.g. via a compute that

fix ave/spatial command 194

http://lammps.sandia.gov

temperature or pressure.

In all cases, the calculated property is averaged over atoms in each layer, where the layers are in a particul:
dim and have a thickness given by delta. Every Nfreq steps, when a property is calculated for the first time
(after a previous write), the number of layers and the layer boundaries are computed. Thus if the simlation b
changes size during a simulation, the number of layers and their boundaries may also change. Layers are
defined relative to a specified origin, which may be the lower/upper edge of the box (in dim) or its center
point, or a specified coordinate value. Starting at the origin, sufficient layers are created in both directions to
completely cover the box. On subsequent timesteps every atom is mapped to one of the layers. Atoms beyc
the lowermost/uppermost layer are counted in the first/last layer.

The units keyword determines the meaning of the distance units used for the layer thickness delta and origit
it is a coordinate value. A box value selects standard distance units as defined by the units command, e.g.
Angstroms for units = real or metal. A lattice value means the distance units are in lattice spacings. The latti
command must have been previously used to define the lattice spacing.

The Nevery and Nfreq arguments specify how the property calculated for each layer is time—averaged. The
property is calculated once each Nevery timesteps. It is averaged and output every Nfreq timesteps. Nfreq
must be a multiple of Nevery. In the 2nd example above, the property is calculated every 100 steps. After 1(
calculations, the average result is written to the file, once every 1000 steps.

The norm keyword also affects how time—averaging is done. For an all setting, a layer quantity is summed
over all atoms in all Nfreg/Nevery samples, as is the count of atoms in the layer. The printed value for the
layer is Total-quantity / Total-count. In other words it is an average over the entire Nfreq timescale.

For a sample setting, the quantity is summed over atoms for only a single sample, as is the count, and a
"average sample value" is computed, i.e. Sample—quantity / Sample—count. The printed value for the layer i
the average of the M "average sample values", where M = Nfreqg/Nevery. In other words it is an average of ¢
average.

Each time info is written to the file, it is in the following format. A line with the timestep and number of

layers is written. Then one line per layer is written, containing the layer ID (1-N), the coordinate of the cente
of the layer, the number of atoms in the layer, and one or more calculated values. The number of atoms anc
the value(s) are average quantities.

If the density or atom keyword is used, or the compute keyword with a compute that calculates a single
guantity per atom, then a single value will be printed for each layer. If the compute keyword is used with a
compute that calculates N quantities per atom, then N values per line will be written, each of them averaged
independently.

For the compute keyword, the calculation performed by the compute in on the group defined by the compute
However, only atoms in the fix group are included in the layer averaging. LAMMPS prints a warning if the
fix group and compute group do not match.

Note that some computes perform costly calculations, involving use of or creation of neighbor lists. If the
compute is invoked too often by fix ave/spatial, it can slow down a simulation.

Restart, fix_maodify, thermo output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix. No quantities calculated by this fix can be output by the thermo_style custom command. No

fix ave/spatial command 195

parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during_energy minimization.

Restrictions: none
Related commands:

compute, fix ave/time

Default:

The option defaults are norm = all and units = lattice.

fix ave/spatial command 196

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

fix ave/time command

Syntax:

fix ID group—ID ave/time Nevery Nfreq compute-ID flag file

« ID, group-ID are documented_in fix command

 ave/time = style name of this fix command

* Nevery = calculate property every this many timesteps

« Nfreq = write average property to file every this many steps
« compute—-ID = ID of compute that performs the calculation
« flag = O for scalar quantity, 1 for vector quantity, 2 for both
« file = filename to write results to

Examples:

fix 1 all ave/time 100 1000 myTemp O temp.stats
Description:

Calculate one or more instantaneous quantities every few timesteps, average them over a longer timescale,
and print the results to a file. This can be used to time—average any "compute” entity in LAMMPS such as a
temperature or pressure.

The compute-ID specifies a compute which calculates the desired property. The compute can be previously
defined in the input script. Or it can be a compute defined by thermodynamic output or other fixes such as fi
nvt or_fix temp/rescale. Users can also write code for their own compute styles and add them to L AMMPS.

In all these cases, the fix ave/time style uses the global scalar or vector calculated by the compute. See the
ave/spatial command if you wish to average spatially, e.g. via a compute that calculates per—atom quantities

The Nevery and Nfreq arguments specify how the property will be averaged. The property is calculated onc
each Nevery timesteps. It is averaged and output every Nfreq timesteps. Nfreq must be a multiple of Nevery
In the example above, the property is calculated every 100 steps. After 10 calculations, the average result is
written to the file, once every 1000 steps.

The flag argument chooses whether the scalar and/or vector calculation of the compute is invoked. The forn
computes a single global value. The latter computes N global values, where N is defined by the compute, e.
6 pressure tensor components. In the vector case, each of the N values is averaged independently and N vz
are written to the file at each output.

Since the calculation is performed by the compute which stores its own "group” definition, the group specifie
for the fix is ignored. LAMMPS prints a warning if the fix group and compute group do not match.

If the compute calculates pressure, it will cause the force computations performed by LAMMPS (pair, bond,
angle, etc) to calculate virial terms each Nevery timesteps. If this is more frequent than thermodynamic
output, this adds extra cost to a simulation. However, if a constant pressure simulation is being run (fix npt c
fix nph), LAMMPS is already calculating virial terms for the pressure every timestep.

fix ave/time command 197

http://lammps.sandia.gov

Restart, fix_maodify, thermo output, run start/stop, minimize info:
No information about this fix is written to binary restart files. None of the fix_modify options are relevant to

this fix. No quantities calculated by this fix can be output by the thermo_style custom command. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked

during_energy minimization.

Restrictions: none

Related commands:

compute, fix ave/spatial

Default: none

fix ave/time command 198

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

fix aveforce command

Syntax:

fix ID group—-ID aveforce fx fy fz
« ID, group-ID are documented_in fix command
« aveforce = style name of this fix command

« fx,fy,fz = force component values (force units)

Examples:

fix pressdown topwall aveforce 0.0 —1.0 0.0
fix 2 bottomwall aveforce NULL -1.0 0.0

Description:

Apply an additional external force to a group of atoms in such a way that every atom experiences the same
force. This is useful for pushing on wall or boundary atoms so that the structure of the wall does not change
over time.

The existing force is averaged for the group of atoms, component by component. The actual force on each
atom is then set to the average value plus the component specified in this command. This means each aton
the group receives the same force.

If any of the arguments is specified as NULL then the forces in that dimension are not changed. Note that th
is not the same as specifying a 0.0 value, since that sets all forces to the same average value without addin
any additional force.

Restart, fix_modify, thermo output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix. No quantities calculated by this fix can be output by the thermo_style custom command. No
parameter of this fix can be used with the start/stop keywords of the run command.

The forces due to this fix are imposed during an energy minimization, invoked_by the minimize command.
Restrictions: none

Related commands:

fix setforce, fix addforce

Default: none

fix aveforce command 199

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

fix com command
Syntax:
fix ID group—ID com N file
« ID, group-ID are documented_in fix command
e com = style name of this fix command
* N = compute center—of-mass every this many timesteps
« file = filename to write center—of-mass info to
Examples:
fix 1 all com 100 com.out

Description:

Compute the center—of-mass of the group of atoms every N steps, including all effects due to atoms passin
thru periodic boundaries. Write the results to the specified file.

Restart, fix_modify, thermo output, run start/stop, minimize info:
No information about this fix is written to binary restart files. None of the fix_modify options are relevant to

this fix. No quantities calculated by this fix can be output by the thermo_style custom command. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked

during_energy minimization.

Restrictions: none
Related commands: none

Default: none

fix com command 200

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

fix deform command

Syntax:

fix ID group—ID deform N parameter args ... keyword value ...

« ID, group-ID are documented_in fix command

 deform = style name of this fix command

* N = perform box deformation every this many timesteps
e one or more parameter/arg pairs may be appended

parameter = X Or y Or Z or Xy Or Xz or yz
X, Y, Z args = style value(s)
style = final or delta or scale or vel or erate or trate or volume
final values = lo hi
lo hi = box boundaries at end of run (distance units)
delta values = dlo dhi
dlo dhi = change in box boundaries at end of run (distance units)
scale values = factor
factor = multiplicative factor for change in box length at end of run
vel value =V
V = change box length at this velocity (distance/time units),
effectively an engineering strain rate
erate value = R
R = engineering strain rate (1/time units)
trate value = R
R = true strain rate (1/time units)
volume value = none = adjust this dim to preserve volume of system
Xy, Xz, yz args = style value
style = final or delta or vel or erate or trate
final value = tilt
tilt = tilt factor at end of run (distance units)
delta value = dtilt
dtilt = change in tilt factor at end of run (distance units)
vel value =V
V = change tilt factor at this velocity (distance/time units),
effectively an engineering shear strain rate
erate value = R
R = engineering shear strain rate (1/time units)

trate value = R
R = true shear strain rate (1/time units)

 zero or more keyword/value pairs may be appended to the args
« keyword = remap or units

remap value = x or v or none
X = remap coords of atoms in group into deforming box
v = remap velocities of all atoms when they cross periodic boundaries
none = no remapping of x or v
units value = lattice or box
lattice = distances are defined in lattice units
box = distances are defined in simulation box units

Examples:

fix 1 all deform x final 0.0 9.0 z final 0.0 5.0 units box

fix deform command

201

http://lammps.sandia.gov

fix 1 all deform x trate 0.1 y volume z volume
fix 1 all deform xy erate 0.001 remap v
fix 1 all deform y delta 0.5 xz vel 1.0

Description:

Change the volume and/or shape of the simulation box during a dynamics run. Orthogonal simulation boxes
have 3 adjustable parameters (x,y,z). Triclinic (non—orthogonal) simulation boxes have 6 adjustable
parameters (X,y,z,Xy,Xz,yz). Any or all of them can be adjusted independently and simultaneously by this
command. This fix can be used to perform non—equilibrium MD (NEMD) simulations of a continuously
strained system. See the fix nvt/sllod and compute temp/deform commands for more details.

Any parameter varied by this command must refer to a periodic dimension — see the boundary command. F
parameters "xy", "xz", and "yz" this means both affected dimensions must be periodic, e.g. x and y for "xy".
Dimensions not varied by this command can be periodic or non—periodic. Unspecified dimensions can also |

controlled by a fix npt or fix nph command.

The size and shape of the initial simulation box at the beginning of a run are specified by the create box or
read_data or read_restart command used to setup the simulation, or they are the values from the end of the
previous run. The create_box, read data, and read_restart commands also specify whether the simulation b
is orthogonal or triclinic and explain the meaning of the xy,xz,yz tilt factors. If fix deform changes the

Xy, xz,yz tilt factors, then the simulation box must be triclinic, even if its initial tilt factors are 0.0.

As described below, the desired simulation box size and shape at the end of the run are determined by the
parameters of the fix deform command. Every Nth timestep during the run, the simulation box is expanded,
contracted, or tilted to ramped values between the initial and final values.

For the X, y, and z parameters, this is the meaning of their styles and values.

The final, delta, scale, vel, and erate styles all change the specified dimension of the box via "constant
displacement” which is effectively a "constant engineering strain rate". This means the box dimension
changes linearly with time from its initial to final value.

For style final, the final lo and hi box boundaries of a dimension are specified. The values can be in lattice ol
box distance units. See the discsussion of the units keyword below.

For style delta, plus or minus changes in the lo/hi box boundaries of a dimension are specified. The values ¢
be in lattice or box distance units. See the discsussion of the units keyword below.

For style scale, a multiplicative factor to apply to the box length of a dimension is specified. For example, if
the initial box length is 10, and the factor is 1.1, then the final box length will be 11. A factor less than 1.0
means compression.

For style vel, a velocity at which the box length changes is specified in units of distance/time. This is
effectively a "constant engineering strain rate", where rate = V/LO and LO is the initial box length. The
distance can be in lattice or box distance units. See the discussion of the units keyword below. For example
the initial box length is 100 Angstroms, and V is 10 Angstroms/psec, then after 10 psec, the box length will
have doubled. After 20 psec, it will have tripled.

The erate style changes a dimension of the the box at a "constant engineering strain rate". The units of the
specified strain rate are 1/time. See_the units command for the time units associated with different choices c

fix deform command 202

simulation units, e.g. picoseconds for "metal” units). Tensile strain is unitless and is defined as delta/length0
where lengthOQ is the original box length and delta is the change relative to the original length. Thus if the
erate R is 0.1 and time units are picoseconds, this means the box length will increase by 10% of its original
length every picosecond. l.e. strain after 1 psec = 0.1, strain after 2 psec = 0.2, etc. R = -0.01 means the bc
length will shrink by 1% of its original length every picosecond. Note that for an "engineering" rate the
change is based on the original box length, so running with R = 1 for 10 picoseconds expands the box lengt
by a factor of 10, not 1024 as it would with trate.

The trate style changes a dimension of the box at a "constant true strain rate". Note that this is not an
"engineering strain rate", as the other styles are. Rather, for a "true" rate, the rate of change is constant, whi
means the box dimension changes non-linearly with time from its initial to final value. The units of the
specified strain rate are 1/time. See the units command for the time units associated with different choices ©
simulation units, e.g. picoseconds for "metal” units). Tensile strain is unitless and is defined as delta/length0
where lengthOQ is the original box length and delta is the change relative to the original length. Thus if the tra
R is 0.1 and time units are picoseconds, this means the box length will increase by 10% of its current length
every picosecond. l.e. strain after 1 psec = 0.1, strain after 2 psec = 0.21, etc. R = 1 or 2 means the box len
will double or triple every picosecond. R = —0.01 means the box length will shrink by 1% of its current length
every picosecond. Note that for a "true" rate the change is continuous and based on the current length, so
running with R = 1 for 10 picoseconds does not expand the box length by a factor of 10 as it would with erat
but by a factor of 1024 since it doubles every picosecond.

Note that to change the volume (or cross—sectional area) of the simulation box at a constant rate, you can
change multiple dimensions via erate or trate. E.g. to double the box volume every picosecond, you could st
"X trate M", "y trate M", "z trate M", with M = pow(2,1/3) — 1 = 1.26, since if each box dimension grows by
26%, the box volume doubles.

The volume style changes the specified dimension in such a way that the box volume remains constant whil
other box dimensions are changed explicitly via the styles discussed above. For example, "x scale 1.1y sca
1.1 z volume" will shrink the z box length as the x,y box lengths increase, to keep the volume constant
(product of x,y,z lengths). If "x scale 1.1 z volume" is specified and parameter y is unspecified, then the z bo
length will shrink as x increases to keep the product of x,z lengths constant. If "x scale 1.1 y volume z
volume" is specified, then both the y,z box lengths will shrink as x increases to keep the volume constant
(product of x,y,z lengths). In this case, the y,z box lengths shrink so as to keep their relative aspect ratio
constant.

For solids or liquids, note that when one dimension of the box is expanded via fix deform (i.e. tensile strain),
it may be physically undesirable to hold the other 2 box lengths constant (unspecified by fix deform) since
that implies a density change. Using the volume style for those 2 dimensions to keep the box volume conste
may make more physical sense, but may also not be correct for materials and potentials whose Poisson rati
not 0.5. An alternative is to use fix npt aniso with zero applied pressure on those 2 dimensions, so that they
respond to the tensile strain dynamically.

For the scale, vel, erate, trate, and volume styles, the box length is expanded or compressed around its mid
point.

For the xy, xz, and yz parameters, this is the meaning of their styles and values. Note that changing the tilt
factors of a triclinic box does not change its volume.

The final, delta, vel, and erate styles all change the shear strain at a "constant engineering shear strain rate’
This means the tilt factor changes linearly with time from its initial to final value.

fix deform command 203

For style final, the final tilt factor is specified. The value can be in lattice or box distance units. See the
discussion of the units keyword below.

For style delta, a plus or minus change in the tilt factor is specified. The value can be in lattice or box distan
units. See the discsussion of the units keyword below.

For style vel, a velocity at which the tilt factor changes is specified in units of distance/time. This is
effectively an "engineering shear strain rate", where rate = V/LO and LO is the initial box length perpendicula
to the direction of shear. The distance can be in lattice or box distance units. See the discsussion of the unit
keyword below. For example, if the initial tilt factor is 5 Angstroms, and the V is 10 Angstroms/psec, then
after 1 psec, the tilt factor will be 15 Angstroms. After 2 psec, it will be 25 Angstroms.

The erate style changes a tilt factor at a "constant engineering shear strain rate". The units of the specified
shear strain rate are 1/time. See_the units command for the time units associated with different choices of
simulation units, e.g. picoseconds for "metal” units). Shear strain is unitless and is defined as offset/length,
where length is the box length perpendicular to the shear direction (e.g. y box length for xy deformation) anc
offset is the displacement distance in the shear direction (e.g. x direction for xy deformation) from the
unstrained orientation. Thus if the erate R is 0.1 and time units are picoseconds, this means the shear strair
will increase by 0.1 every picosecond. l.e. if the xy shear strain was initially 0.0, then strain after 1 psec = 0..
strain after 2 psec = 0.2, etc. Thus the tilt factor would be 0.0 at time 0, 0.1*ybox at 1 psec, 0.2*ybox at 2
psec, etc, where ybox is the original y box length. R = 1 or 2 means the tilt factor will increase by 1 or 2 ever
picosecond. R = -0.01 means a decrease in shear strain by 0.01 every picosecond.

The trate style changes a tilt factor at a "constant true shear strain rate". Note that this is not an "engineerin
shear strain rate", as the other styles are. Rather, for a "true" rate, the rate of change is constant, which mee
the tilt factor changes non-linearly with time from its initial to final value. The units of the specified shear
strain rate are 1/time. See the units command for the time units associated with different choices of simulati
units, e.g. picoseconds for "metal” units). Shear strain is unitless and is defined as offset/length, where lengt
is the box length perpendicular to the shear direction (e.g. y box length for xy deformation) and offset is the
displacement distance in the shear direction (e.g. x direction for xy deformation) from the unstrained
orientation. Thus if the trate R is 0.1 and time units are picoseconds, this means the shear strain or tilt factol
will increase by 10% every picosecond. |.e. if the xy shear strain was initially 0.1, then strain after 1 psec =
0.11, strain after 2 psec = 0.121, etc. R = 1 or 2 means the tilt factor will double or triple every picosecond. F
= -0.01 means the tilt factor will shrink by 1% every picosecond. Note that the change is continuous, so
running with R = 1 for 10 picoseconds does not change the tilt factor by a factor of 10, but by a factor of 102
since it doubles every picosecond. Also note that the initial tilt factor must be non-zero to use the trate optio

Note that shear strain is defined as the tilt factor divided by the perpendicular box length. The erate and trat
styles control the tilt factor, but assume the perpendicular box length remains constant. If this is not the case
(e.g. it changes due to another fix deform parameter), then this effect on the shear strain is ignored.

All of these styles change the xy, xz, yz tilt factors during a simulation. In LAMMPS, tilt factors (xy,xz,yz)
for triclinic boxes are always bounded by half the distance of the parallel box length. For example, if xlo = 2
and xhi = 12, then the x box length is 10 and the xy tilt factor must be between -5 and 5. Similarly, both xz
and yz must be between —(xhi—xl0)/2 and +(yhi-ylo)/2. Note that this is not a limitation, since if the
maximum tilt factor is 5 (as in this example), then configurations with tilt = ..., =15, -5, 5, 15, 25, ... are all
equivalent.

To obey this constraint and allow for large shear deformations to be applied via the xy, xz, or yz parameters
the folloiwng algorithm is used. If prd is the associated parallel box length (10 in the example above), then if
the tilt factor exceeds the accepted range of =5 to 5 during the simulation, then the box is re-shaped to the

fix deform command 204

other limit (an equivalent box) and the simulation continues. Thus for this example, if the initial xy tilt factor
was 0.0 and "xy final 100.0" was specified, then during the simulation the xy tilt factor would increase from
0.0 to 5.0, the box would be re-shaped so that the tilt factor becomes —5.0, the tilt factor would increase fror
-5.0to 5.0, the box would be re-shaped again, etc. The re-shaping would occur 10 times and the final tilt
factor at the end of the simulation would be 0.0. During each re—shaping event, atoms are remapped into th
new box in the appropriate manner.

Each time the box size or shape is changed, the remap keyword determines whether atom positions are
re—mapped to the new box. If remap is set to x (the default), atoms in the fix group are re—mapped; otherwis
they are not. If remap is set to v, then any atom in the fix group that crosses a periodic boundary will have a
delta added to its velocity equal to the difference in velocities between the lo and hi boundaries. Note that th
velocity difference can include tilt components, e.g. a delta in the x velocity when an atom crosses the y
periodic boundary. If remap is set to none, then neither of these remappings take place.

IMPORTANT NOTE: When non-equilibrium MD (NEMD) simulations are performed using this fix, the
option "remap v" should normally be used. This is because fix nvt/sllod adjusts the atom positions and
velocities to provide a velocity profile that matches the changing box size/shape. Thus atom coordinates
should NOT be remapped by fix deform, but velocities SHOULD be when atoms cross periodic boundaries,
since when atoms cross periodic boundaries since that is consistent with maintaining the velocity profile
created by fix nvt/sllod. LAMMPS will warn you if this settings is not consistent.

The units keyword determines the meaning of the distance units used to define various arguments. A box
value selects standard distance units as defined by the units command, e.g. Angstroms for units = real or
metal. A lattice value means the distance units are in lattice spacings. The lattice command must have beer
previously used to define the lattice spacing. Note that the units choice also affects the vel style parameters
since it is defined in terms of distance/time.

Restart, fix_modify, thermo output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix. No quantities calculated by this fix can be output by the thermo_style custom command.

This fix can perform deformation over multiple runs, using the start and stop keywords of the run command.
See the run command for details of how to do this.

This fix is not invoked during_energy minimization.
Restrictions:

Any box dimension varied by this fix must be periodic.
Related commands:

displace_box

Default:

The option defaults are remap = x and units = lattice.

fix deform command 205

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

fix deposit command

Syntax:

fix ID group—ID deposit N type M seed keyword values ...

« ID, group-ID are documented_in fix command

« deposit = style name of this fix command

* N = # of atoms to insert

* type = atom type to assign to inserted atoms

* M =insert a single particle every M steps

» seed = random # seed

< one or more keyword/value pairs may be appended to args

« keyword = region or global or local or near or attempt or rate or vx or vy or vz or units

region value = region-1D
region—ID = ID of region to use as insertion volume
global values = lo hi
lo,hi = put new particle a distance lo—hi above all other particles (distance units)
local values = lo hi delta
lo,hi = put new particle a distance lo—-hi above any nearby particle beneath it (distance units)
delta = lateral distance within which a neighbor is considered "nearby" (distance units)
near value = R
R = only insert particle if further than R from existing particles (distance units)
attempt value = Q
Q = attempt a single insertion up to Q times
rate value =V
V =z velocity (y in 2d) at which insertion volume moves (velocity units)
vx values = vxlo vxhi
vxlo,vxhi = range of x velocities for inserted particle (velocity units)
vy values = vylo vyhi
vylo,vyhi = range of y velocities for inserted particle (velocity units)
vz values = vzlo vzhi
vzlo,vzhi = range of z velocities for inserted particle (velocity units)
units value = lattice or box
lattice = the geometry is defined in lattice units
box = the geometry is defined in simulation box units

Examples:

fix 3 all deposit 1000 2 100 29494 region myblock local 1.0 1.0 1.0 units box
fix 2 newatoms deposit 10000 1 500 12345 region disk near 2.0 vz -1.0 -0.8

Description:

Insert a single particle into the simulation domain every M timesteps until N particles have been inserted. Th
is useful for simulating the deposition of particles onto a surface.

Inserted particles have the specified atom type and are assigned to two groups: the default group "all"* and tl
group specified in the fix deposit command (which can also be "all").

If you are computing temperature values which include inserted particles, you will want to use the
compute_modify dynamic option, which insures the current number of atoms is used as a normalizing factor

fix deposit command 206

http://lammps.sandia.gov

each time temperature is computed.

Care must be taken that inserted particles are not too near existing particles, using the options described
below. When inserting particles above a surface in a non—perioidic box (see the boundary command), the
possibility of a particle escaping the surface and flying upward should be considered, since the particle may
lost or the box size may grow infinitely large. A fix wall/reflect command can be used to prevent this
behavior. Note that if a shrink—wrap boundary is used, it is OK to insert the new particle outside the box,
however the box will immediately be expanded to include the new patrticle.

This command must use the region keyword to define an insertion volume. The specified region must have
been previously defined with a region command. It must be defined with side = in.

Each timestep a patrticle is to be inserted, its coordinates are chosen as follows. A random position within th
insertion volume is generated. If neither the global or local keyword is used, that is the trial position. If the
global keyword is used, the random X,y values are used, but the z position of the new particle is set above tt
highest current atom in the simulation by a distance randomly chosen between lo/hi. (For a 2d simulation, th
is done for the y position.) If the local keyword is used, the z position is set a distance between lo/hi above tl
highest current atom in the simulation that is "nearby" the chosen X,y position. In this context, "nearby" meal
the lateral distance (in x,y) between the new and old particles is less than the delta parameter.

Once a trial x,y,z location has been computed, the insertion is only performed if no current particle in the
simulation is within a distance R of the new patrticle. If this test fails, a new random position within the
insertion volume is chosen and another trial is made. Up to Q attempts are made, after which LAMMPS prin
a warning message.

The rate option moves the insertion volume in the z direction (3d) or y direction (2d). This enables patrticles 1
be inserted from a successively higher height over time. Note that this parameter is ignored if the global or
local keywords are used, since those options choose a z—coordinate for insertion independently.

The vx, vy, and vz components of velocity for the inserted particle are set using the values specified for the
vX, vy, and vz keywords. Note that normally, new particles should be a assigned a negative vertical velocity
that they move towards the surface.

The units keyword determines the meaning of the distance units used for the other deposition parameters. £
box value selects standard distance units as defined_ by the units command, e.g. Angstroms for units = real «
metal. A lattice value means the distance units are in lattice spacings. The lattice command must have beer
previously used to define the lattice spacing. Note that the units choice affects all the keyword values that
have units of distance or velocity.

Restart, fix_maodify, thermo output, run start/stop, minimize info:

No information about this fix is written to binary restart files. This means you must be careful when restarting
a deposition simulation, when the restart file was written in the middle of the deposition operation.
Specifically, you should use a new fix deposit command in the input script for the restarted simulation that
continues the operation. You will need to adjust the arguments of the original fix deposit command to do this

Also note that because the state of the random number generator is not saved in restart files, you cannot dc
"exact" restarts with this fix, where the simulation continues on the same as if no restart had taken place.
However, in a statistical sense, a restarted simulation should produce the same behavior if you adjust the fi
deposit parameters appropriately.

fix deposit command 207

None of the fix_maodify options are relevant to this fix. No quantities calculated by this fix can be output by
the thermo_style custom command. No parameter of this fix can be used with the start/stop keywords of the
run command. This fix is not invoked during energy minimization.

Restrictions: none

Related commands:

fix_pour, region

Default:

The option defaults are delta = 0.0, near = 0.0, attempt = 10, rate = 0.0, vx =0.0 0.0, vy = 0.0 0.0, vz = 0.0
0.0, and units = lattice.

fix deposit command 208

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

fix drag command
Syntax:
fix ID group—ID drag x y z fmag delta
« ID, group-ID are documented_in fix command
« drag = style name of this fix command
* X,y,Z = coord to drag atoms towards
« fmag = magnitude of force to apply to each atom (force units)
« delta = cutoff distance inside of which force is not applied (distance units)
Examples:
fix center small-molecule drag 0.0 10.0 0.0 5.0 2.0

Description:

Apply a force to each atom in a group to drag it towards the point (X,y,z). The magnitude of the force is
specified by fmag. If an atom is closer than a distance delta to the point, then the force is not applied.

Any of the x,y,z values can be specified as NULL which means do not include that dimension in the distance
calculation or force application.

This command can be used to steer one or more atoms to a new location in the simulation.
Restart, fix_modify, thermo output, run start/stop, minimize info:
No information about this fix is written to binary restart files. None of the fix_modify options are relevant to

this fix. No quantities calculated by this fix can be output by the thermo_style custom command. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked

during_energy minimization.

Restrictions: none
Related commands:
fix spring

Default: none

fix drag command 209

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

fix efield command

Syntax:

fix ID group—ID efield ex ey ez
« ID, group-ID are documented_in fix command
« efield = style name of this fix command

 ex,ey,ez = E-field component values (electric field units)

Examples:

fix kick external—field efield 1.0 0.0 0.0
Description:

Add a force F = gE to each charged atom in the group due to an external electric field being applied to the
system.

Restart, fix_modify, thermo output, run start/stop, minimize info:
No information about this fix is written to binary restart files. None of the fix_modify options are relevant to

this fix. No quantities calculated by this fix can be output by the thermo_style custom command. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked

during_energy minimization.

Restrictions: none
Related commands:
fix addforce

Default: none

fix efield command 210

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

fix enforce2d command
Syntax:
fix ID group—ID enforce2d

« ID, group-ID are documented_in fix command
 enforce2d = style name of this fix command

Examples:

fix 5 all enforce2d
Description:

Zero out the z—dimension velocity and force on each atom in the group. This is useful when running a 2d
simulation to insure that atoms do not move from their initial z coordinate.

Restart, fix_modify, thermo output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix. No quantities calculated by this fix can be output by the thermo_style custom command. No
parameter of this fix can be used with the start/stop keywords of the run command.

The forces due to this fix are imposed during an energy minimization, invoked_by the minimize command.
Restrictions: none

Related commands: none

Default: none

fix enforce2d command 211

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

fix freeze command
Syntax:
fix ID group-ID freeze

« ID, group-ID are documented_in fix command
« freeze = style name of this fix command

Examples:

fix 2 bottom freeze
Description:

Zero out the force and torque on a granular particle. This is useful for preventing certain particles from
moving in a simulation.

Restart, fix_modify, thermo output, run start/stop, minimize info:
No information about this fix is written to binary restart files. None of the fix_modify options are relevant to

this fix. No quantities calculated by this fix can be output by the thermo_style custom command. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked

during_energy minimization.

Restrictions:

This fix is part of the "granular” package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

There can only be a single freeze fix defined. This is because other parts of the code (pair potentials,
thermodynamics, etc) treat frozen particles differently and need to be able to reference a single group to wh
this fix is applied.

Related commands: none

atom_style granular

Default: none

fix freeze command 212

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

fix gran/diag command

Syntax:

fix ID group—ID gran/diag nevery file zlayer

« ID, group-ID are documented_in fix command
 gran/diag = style name of this fix command

* nevery = compute diagnostics every this many timesteps
« file = filename to store diagnostic info in

« Zlayer = bin size in z dimension

Examples:

fix 1 all gran/diag 1000 tmp 0.9

Description:

Compute aggregate density, velocity, and stress diagnostics for a group of granular atoms as a function of z
depth in the granular system. The results are written to 3 files named file.den, file.vel, and file.str. The z bins
begin at the bottom of the system and extend upward with a thickness of zlayer for each bin. The quantities
written to the file are averaged over all atoms in the bin.

Restart, fix_modify, thermo output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to

this fix. No quantities calculated by this fix can be output by the thermo_style custom command. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked

during_energy minimization.

Restrictions:

This fix is part of the "granular” package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

Related commands:

atom_style granular

Default: none

fix gran/diag command 213

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

fix gravity command

Syntax:
fix ID group gravity style args

« ID, group are documented_in fix command
« gravity = style name of this fix command
« style = chute or spherical or gradient or vector

chute args = angle
angle = angle in +x away from -z axis (in degrees)
spherical args = phi theta
phi = azimuthal angle from +x axis (in degrees)
theta = angle from +z axis (in degrees)
gradient args = phi theta phi_grad theta_grad
phi = azimuthal angle from +x axis (in degrees)
theta = angle from +z axis (in degrees)
phi_grad = rate of change of angle phi (full rotations per time unit)
theta_grad = rate of change of angle theta

(full rotations per time unit)

vector args = magnitude xy z
magnitude = size of acceleration (force/mass units)
X'y z = vector direction to apply the acceleration

Examples:

fix 1 all gravity chute 24.0

fix 1 all gravity spherical 0.0 -180.0

fix 1 all gravity gradient 0.0 -180.0 0.0 0.1
fix 1 all gravity vector 100.0110

Description:

Impose an additional acceleration on each particle in the group. For granular systems the magnitude is chos
S0 as to be due to gravity. For non—granular systems the magnitude of the acceleration is specified, so it cal
be any kind of driving field desired (e.g. a pressure gradient inducing a Poisselle flow). Note that this is
different from what the fix addforce command does, since it adds the same force to each atom, independent
its mass. This command adds the same acceleration to each atom (force/mass).

The first 3 styles apply to granular systems. Style chute is typically used for simulations of chute flow where
the specified angle is the chute angle, with flow occurring in the +x direction. Style spherical allows an
arbitrary 3d direction to be specified for the gravity vector. Style gradient allows the direction of the gravity
vector to be time dependent. The units of the gradient arguments are in full rotations per time unit. E.g. a
timestep of 0.001 and a gradient of 0.1 means the gravity vector would rotate thru 360 degrees every 10,00
timesteps. For the time—dependent case, the initial direction of the gravity vector is phi,theta at the time the
is specified.

Phi and theta are defined in the usual spherical coordinates. Thus for gravity acting in the —z direction, theta

would be specified as 180.0 (or —180.0). Theta = 90.0 and phi = —-90.0 would mean gravity acts in the -y
direction.

fix gravity command 214

http://lammps.sandia.gov

Style vector is used for non—granular systems. An acceleration of the specified magnitude is applied to eact
atom in the group in the vector direction given by (x,y,z).

The strength of the acceleration due to gravity is 1.0 in LJ units, which are the only allowed units for granula
systems.

Restart, fix_maodify, thermo output, run start/stop, minimize info:
No information about this fix is written to binary restart files. None of the fix_modify options are relevant to

this fix. No quantities calculated by this fix can be output by the thermo_style custom command. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked

during_energy minimization.

Restrictions:

Styles chute, spherical, and gradient can only be used with atom_style granular. Style vector can only be us
with non—granular systems.

Related commands:

atom_style granular, fix addforce

Default: none

fix gravity command 215

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

fix gyration command
Syntax:
fix ID group—-ID gyration N file
« ID, group-ID are documented_in fix command
« gyration = style name of this fix command
« N = compute radius—of-gyration every this many timesteps

« file = filename to write gyration info to

Examples:

fix 1 all gyration 100 molecule.out
Description:

Compute the radius—of-gyration of the group of atoms every N steps, including all effects due to atoms
passing thru periodic boundaries. Write the results to the specified file.

Rg is a measure of the size of the group of atoms, and is computed by this formula

where M is the total mass of the group and Rcm is the center—of—-mass position of the group.
Restart, fix_modify, thermo output, run start/stop, minimize info:
No information about this fix is written to binary restart files. None of the fix_modify options are relevant to

this fix. No quantities calculated by this fix can be output by the thermo_style custom command. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked

during_energy minimization.

Restrictions: none
Related commands: none

Default: none

fix gyration command 216

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

fix heat command

Syntax:

fix ID group—ID heat N eflux

« ID, group-ID are documented_in fix command

« heat = style name of this fix command

« N = add/subtract heat every this many timesteps

« eflux = rate of heat addition or subtraction (energy/time units)

Examples:

fix 3 ginheat1 1.0
fix 4 qout heat 1 -1.0

Description:

Add non-translational kinetic energy (heat) to a group of atoms such that their aggregate momentum is
conserved. Two of these fixes can be used to establish a temperature gradient across a simulation domain |
adding heat to one group of atoms (hot reservoir) and subtracting heat from another (cold reservoir). E.g. a
simulation sampling from the McDLT ensemble. Note that the fix is applied to a group of atoms, not a
geometric region, so that the same set of atoms is affected wherever they may move to.

Heat addition/subtraction is performed every N timesteps. The eflux parameter determines the change in
aggregate energy of the entire group of atoms. Since eflux is in units of energy/time, this means a larger val
of N will add/subtract a larger amount of energy each timestep the fix is invoked. If heat is subtracted from
the system too aggressively so that the group's kinetic energy goes to zero, LAMMPS halts with an error
message.

Fix heat is different from a thermostat such as fix nvt or fix temp/rescale in that energy is added/subtracted
continually. Thus if there isn't another mechanism in place to counterbalance this effect, the entire system w
heat or cool continuously. You can use multiple heat fixes so that the net energy change is 0.0 or use fix
viscous to drain energy from the system.

This fix does not change the coordinates of its atoms; it only scales their velocities. Thus you must still use ¢
integration fix (e.qg.fix nve) on the affected atoms. This fix should not normally be used on atoms that have
their temperature controlled by another fix — e.q. fix nvt or fix langevin fix.

Restart, fix_modify, thermo output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix. No quantities calculated by this fix can be output by the thermo_style custom command. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked

during_energy minimization.

Restrictions: none

Related commands:

fix heat command 217

http://lammps.sandia.gov

compute temp, compute temp/region

Default: none

fix heat command 218

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

fix indent command

Syntax:

fix ID group—-ID indent k keyword args ...

« ID, group-ID are documented_in fix command

« indent = style name of this fix command

 k = force constant for indenter surface (force/distance”2 units)
« one or more keyword/value pairs may be appended to the args
» keyword = sphere or cylinder or vel or rstart or units

sphereargs=xyzR
X,Y,Z = initial position of center of indenter
R = sphere radius of indenter (distance units)
cylinder args =dimcl c2 R
dim = x ory or z = axis of cylinder
cl,c2 = coords of cylinder axis in other 2 dimensions (distance units)
R = cylinder radius of indenter (distance units)
vel args = vx vy vz
vx,vy,vz = velocity of center of indenter (velocity units)
rstart value = RO
RO = sphere or cylinder radius at start of run (distance units)
R is value at end of run, so indenter expands/contracts over time
units value = lattice or box
lattice = the geometry is defined in lattice units
box = the geometry is defined in simulation box units

Examples:

fix 1 all indent 10.0 sphere 0.0 0.0 15.0 3.0 vel 0.0 0.0 -1.0
fix 2 flow indent 10.0 cylinder z 0.0 0.0 10.0 units box

Description:

Insert an indenter within a simulation box. The indenter repels all atoms that touch it, so it can be used to pu
into a material or as an obstacle in a flow.

The indenter can either be spherical or cylindrical. You must set one of those 2 keywords.
A spherical indenter exerts a force of magnitude
F=-k({-R)"2

on each atom where k is the specified force constant, r is the distance from the atom to the center of the
indenter, and R is the radius of the indenter. The force is repulsive and F(r) = 0 forr > R.

A cylindrical indenter exerts the same force, except that r is the distance from the atom to the center axis of
the cylinder. The cylinder extends infinitely along its axis.

If the vel keyword is specified, the center (or axis) of the spherical (or cylindrical) indenter will move during
the simulation, based on its initial position (x,y,z) and the specified (vx,vy,vz). Note that if you do multiple

fix indent command 219

http://lammps.sandia.gov

runs, the initial position of the indenter (x,y,z) does not change, so it will continue to move at the specified
velocity.

If the rstart keyword is specified, then the radius of the indenter is a time—-dependent quantity. RO is the valu
assigned at the start of the run; R is the value at the end. At intermediate times, the radius is linearly
interpolated between these two values. This option can be used, for example, to grow/shrink a void within th
simulation box.

The units keyword determines the meaning of the distance units used to define the indenter. A box value
selects standard distance units as defined by the units command, e.g. Angstroms for units = real or metal. A
lattice value means the distance units are in lattice spacings. The lattice command must have been previous
used to define the lattice spacing. Note that the units choice affects not only the indenter's physical geometr
but also its velocity and force constant since they are defined in terms of distance as well.

Restart, fix_maodify, thermo output, run start/stop, minimize info:

No information about this fix is written to binary restart files.

The fix_modify energy option is supported by this fix to add the energy of interaction between atoms and the
indenter to the system's potential energy as part of thermodynamic output. The energy of each patrticle
interacting with the indenter is K/3 (r - R)"3.

The atom/indenter interaction energy can be printed as part of thermodynamic output via the keyword f_ID,
where ID is the fix—ID of this fix. See the thermo_style custom command for details.

This fix can adjust the indenter position and radius over multiple runs, using the start and stop keywords of
the_run command. See the run command for details of how to do this.

The forces due to this fix are imposed during an energy minimization, invoked by the minimize command.
The rstart keyword does not change the indenter radius during an energy minimization; the indenter always
has a radius of its final value R in that case.

IMPORTANT NOTE: If you want the atom/indenter interaction energy to be included in the total potential
energy of the system (the quantity being minimized), you MUST enable the fix_modify energy option for this
fix.

Restrictions: none

Related commands: none

Default:

The option defaults are vel = 0,0,0 and units = lattice.

fix indent command 220

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

fix langevin command

Syntax:

fix ID group—-ID langevin Tstart Tstop damp seed keyword values ...

« ID, group-ID are documented_in fix command

« langevin = style name of this fix command

« Tstart, Tstop = desired temperature at start/end of run (temperature units)
e damp = damping parameter (time units)

« seed = random # seed to use for white noise (8 digits or less)

 zero or more keyword/value pairs may be appended to the args

keyword = axes or scale or region
axes values = xflag yflag zflag
xflag,yflag,zflag = 0/1 to exclude/include a dimension in the thermostat
scale values = type ratio
type = atom type (1-N)
ratio = factor to scale the damping coefficient by
region values = region-ID
region—ID = ID of region to apply thermostat to

Examples:

fix 3 boundary langevin 1.0 1.0 1000.0 699483
fix 1 all langevin 1.0 1.1 100.0 48279 axes 01 1
fix 3 boundary langevin 1.0 1.0 1000.0 699483 region boundary

Description:
Apply a Langevin thermostat to a group of atoms which models an interaction with a background implicit

solvent. Used with fix nve, this command performs Brownian dynamics (BD), since the total force on each
atom will have the form:

F=Fc+Ff+Fr

Fc is the conservative force computed via the usual inter—patrticle interactions (pair_style, bond_style, etc).
The Ff and Fr terms are added by this fix. Ff = — gamma v and is a frictional drag or viscous damping term
proportional to the patrticle's velocity. Gamma for each atom is computed as m/damp, where m is the mass «
the particle and damp is the damping factor specified by the user.

Fr is a force due to solvent atoms at a temperature T randomly bumping into the particle. As derived from th
fluctuation/dissipation theorum, its magnitude is proportional to sqrt(T m / dt damp), where T is the desired
temperature, m is the mass of the particle, dt is the timestep size, and damp is the damping factor. Random
numbers are used to randomize the direction and magnitude of this force.

The desired temperature at each timestep is a ramped value during the run from Tstart to Tstop.

The damp parameter is specified in time units and determines how rapidly the temperature is relaxed. For
example, a value of 100.0 means to relax the temperature in a timespan of (roughly) 100 time units (tau or

fix langevin command 221

http://lammps.sandia.gov

fmsec or psec - see the units command). The damp factor can be thought of as inversely related to the
viscosity of the solvent. |.e. a small relaxation time implies a hi-viscosity solvent and vice versa. See the
discussion about gamma and viscosity in the documentation for the fix viscous command for more details.

The random # seed should be a hon-zero integer with 1 to 8 digits. A Marsaglia random number generator |
used. Each processor uses the input seed to generate its own unique seed and its own stream of random
numbers. Thus the dynamics of the system will not be identical on two runs on different numbers of
processors.

The keyword axes can be used to specify which dimensions to add Ff and Fr to. A flag of 0 means skip that
dimension; a flag of 1 means include that dimension. The default is 1 for all 3 dimensions.

The keyword scale allows the damp factor to be scaled up or down by the specified factor for atoms of that
type. It can be used multiple times to adjust damp for several atom types. Note that specifying a ratio of 2
increase the relaxation time which is equivalent to the the solvent's viscosity acting on particles with 1/2 the
diameter. This is the opposite effect of scale factors used by the fix viscous command, since the damp facto
in fix langevin is inversely related to the gamma factor in fix viscous. Also note that the damping factor in fix
langevin includes the particle mass in Ff, unlike fix viscous. Thus the mass and size of different atom types
should be accounted for in the choice of ratio values.

The keyword region applies the fix only to atoms that are in the specified geometric region (and in the fix
group). Since atoms can enter/leave a region, this test is performed each timestep.

As noted above, fix langevin does not update the coordinates or velocities of its atoms, only the forces. It is
normally used with a fix nve that does the time integration. Fix langevin should not normally be used on
atoms that also have their temperature controlled by another fix —e.g. a nvt or temp/rescale fix.

Restart, fix_maodify, thermo output, run start/stop, minimize info:

No information about this fix is written to binary restart files. Because the state of the random number
generator is not saved in restart files, this means you cannot do "exact" restarts with this fix, where the
simulation continues on the same as if no restart had taken place. However, in a statistical sense, a restarte
simulation should produce the same behavior.

None of the fix_maodify options are relevant to this fix. No quantities calculated by this fix can be output by
the thermo_style custom command.

This fix can ramp its target temperature over multiple runs, using the start and stop keywords of the run
command. See the run command for details of how to do this.

This fix is not invoked during energy minimization.
Restrictions: none
Related commands:

fix nvt, fix temp/rescale, fix viscous

Default: none

fix langevin command 222

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

fix lineforce command

Syntax:

fix ID group—ID lineforce x y z
« ID, group-ID are documented_in fix command
« lineforce = style name of this fix command

e Xy z = direction of line as a 3-vector

Examples:

fix hold boundary lineforce 0.0 1.0 1.0
Description:

Adjust the forces on each atom in the group so that it's motion will be along the linear direction specified by
the vector (x,y,2). This is done by subtracting out components of force perpendicular to the line.

If the initial velocity of the atom is 0.0 (or along the line), then it should continue to move along the line
thereafter.

Restart, fix_modify, thermo output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix. No quantities calculated by this fix can be output by the thermo_style custom command. No
parameter of this fix can be used with the start/stop keywords of the run command.

The forces due to this fix are imposed during an energy minimization, invoked_by the minimize command.
Restrictions: none

Related commands:

fix planeforce

Default: none

fix lineforce command 223

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

fix_modify command

Syntax:
fix_modify fix—ID keyword value ...

« fix—ID = ID of the fix to modify
< one or more keyword/value pairs may be appended
« keyword = temp or press or energy

temp value = compute ID that calculates a temperature
press value = compute ID that calculates a pressure
energy value = yes or no

Examples:

fix_modify 3 temp myTemp press myPress
fix_modify 1 energy yes

Description:

Modify one or more parameters of a previously defined fix. Only specific fix styles support specific
parameters. See the doc pages for individual fix commands for info on which ones support which fix_modify
parameters.

The temp keyword is used to determine how a fix computes temperature. The specified compute ID must he
been previously defined by the user via the compute command and it must be a style of compute that
calculates a temperature. All fixes that compute temperatures define their own compute by default, as
described in their documentation. Thus this option allows the user to override the default method for
computing T.

The press keyword is used to determine how a fix computes pressure. The specified compute ID must have
been previously defined by the user via the compute command and it must be a style of compute that
calculates a pressure. All fixes that compute pressures define their own compute by default, as described in
their documentation. Thus this option allows the user to override the default method for computing P.

For fixes that calculate a contribution to the potential energy of the system, the energy keyword will include
that contribution in thermodyanmic output of potential energy. See the thermo style command for info on
how potential energy is output. The contribution by itself can be printed by using the keyword f_ID in the
thermo_style custom command, where ID is the fix—ID of the appropriate fix.

Restrictions: none

Related commands:

fix, temperature, thermo_style

Default:

fix_modify command 224

http://lammps.sandia.gov

The option defaults are temp = ID defined by fix, press = ID defined by fix, energy = no.

fix_modify command 225

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

fix momentum command

Syntax:

fix ID group—ID momentum N keyword values ...

« ID, group-ID are documented_in fix command

* momentum = style name of this fix command

« N = adjust the momentum every this many timesteps one or more keyword/value pairs may be
appended to the args

» keyword = linear or angular

linear values = xflag yflag zflag
xflag,yflag,zflag = 0/1 to exclude/include each dimension
angular values = none

Examples:

fix 1 all momentum 1 linear 1 1 0
fix 1 all momentum 100 linear 1 1 1 angular

Description:

Zero the linear and/or angular momentum of the group of atoms every N timesteps by adjusting the velocitie
of the atoms. One (or both) of the linear or angular keywords must be specified.

If the linear keyword is used, the linear momentum is zeroed by subtracting the center—of-mass velocity of
the group from each atom. This does not change the relative velocity of any pair of atoms. One or more
dimensions can be excluded from this operation by setting the corresponding flag to 0.

If the angular keyword is used, the angular momentum is zeroed by subtracting a rotational component frorr
each atom.

This command can be used to insure the entire collection of atoms (or a subset of them) does not drift or rot
during the simulation due to random perturbations_(e.qg. fix langevin thermostatting).

Note that the velocity command can be used to create initial velocities with zero aggregate linear and/or
angular momentum.

Restart, fix_modify, thermo output, run start/stop, minimize info:
No information about this fix is written to binary restart files. None of the fix_modify options are relevant to

this fix. No quantities calculated by this fix can be output by the thermo_style custom command. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked

during_energy minimization.

Restrictions: none

Related commands:

fix momentum command 226

http://lammps.sandia.gov

fix recenter, velocity

Default: none

fix momentum command 227

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

fix msd command
Syntax:
fix ID group—ID msd N file
« ID, group-ID are documented_in fix command
* msd = style name of this fix command
* N = compute mean-squared displacement every this many timesteps
« file = filename to write mean-squared displacement info to
Examples:
fix 1 all msd 100 diff.out
Description:
Compute the mean-squared displacement of the group of atoms every N steps, including all effects due to
atoms passing thru periodic boundaries. The slope of the mean—squared displacement versus time is
proportional to the diffusion coefficient of the diffusing atoms. The "origin" of the displacement for each atorr
is its position at the time the fix command was issued. Write the results to the specified file.

Restart, fix_modify, thermo output, run start/stop, minimize info:

This fix writes the original coordinates of diffusing atoms to binary restart files, so that the mean-squared
displacement will be accurate in a restarted simulation. See the read restart command for info on how to
re—specify a fix in an input script that reads a restart file, so that the operation of the fix continues in an
uninterrupted fashion.

None of the fix_maodify options are relevant to this fix. No quantities calculated by this fix can be output by
the thermo_style custom command. No parameter of this fix can be used with the start/stop keywords of the
run command. This fix is not invoked during energy minimization.

Restrictions: none

Related commands: none

Default: none

fix msd command 228

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

fix nph command

Syntax:
fix ID group—ID nph p-style args keyword value ...

« ID, group-ID are documented_in fix command
* nph = style name of this fix command
e p-style = xyz or Xy or yz or Xz or aniso

Xyz args = Pstart Pstop Pdamp
Pstart,Pstop = desired pressure at start/end of run (pressure units)
Pdamp = pressure damping parameter (time units)
Xy or yz or xz args = Px0 Px1 Py0 Pyl Pz0 Pz1 Pdamp
Px0,Px1,Py0,Py1,Pz0,Pz1 = desired pressure in x,y,z at
start/end (0/1) of run (pressure units)
Pdamp = pressure damping parameter (time units)
aniso args = Px0 Px1 Py0 Pyl Pz0 Pz1 Pdamp
Px0,Px1,Py0,Py1,Pz0,Pz1 = desired pressure in x,y,z at
start/end (0/1) of run (pressure units)
Pdamp = pressure damping parameter (time units)
 zero or more keyword/value pairs may be appended to the args

» keyword = drag or dilate

drag value = drag factor added to barostat (0.0 = no drag)
dilate value = all or partial

Examples:

fix 1 all nph xyz 0.0 0.0 1000.0
fix 2 all nph xz 5.0 5.0 NULL NULL 5.0 5.0 1000.0 drag 1.0
fix 2 all nph aniso 0.0 0.0 0.0 0.0 NULL NULL 1000.0

Description:

Perform constant NPH integration to update positions and velocities each timestep for atoms in the group
using a Nose/Hoover pressure barostat. P is pressure. This creates a system trajectory consistent with the
isobaric ensemble. Unlike fix npt, temperature will not be controlled if no other fix is used. Temperature can
be controlled independently by using "fix langevin or fix temp/rescale.

The atoms in the fix group are the only ones whose velocities and positions are updated by the
velocity/position update portion of the NPT integration.

Regardless of what atoms are in the fix group, a global pressure is computed for all atoms. Similarly, when t
size of the simulation box is changed, all atoms are re—scaled to new positions, unless the keyword dilate is
specified with a value of partial, in which case only the atoms in the fix group are re—scaled. The latter can
useful for leaving the coordinates of atoms in a solid substrate unchanged and controlling the pressure of a
surrounding fluid.

The pressure can be controlled in one of several styles, as specified by the p—style argument. In each case,
desired pressure at each timestep is a ramped value during the run from the starting value to the end value.

fix nph command 229

http://lammps.sandia.gov

Style xyz means couple all 3 dimensions together when pressure is computed (isotropic pressure), and
dilate/contract the 3 dimensions together.

Styles xy or yz or xz means that the 2 specified dimensions are coupled together, both for pressure
computation and for dilation/contraction. The 3rd dimension dilates/contracts independently, using its
pressure component as the driving force.

For style aniso, all 3 dimensions dilate/contract independently using their individual pressure components a:
the 3 driving forces.

For any of the styles except xyz, any of the independent pressure components (e.g. z in xy, or any dimensic
aniso) can have their target pressures (both start and stop values) specified as NULL. This means that no
pressure control is applied to that dimension so that the box dimension remains unchanged.

In some cases (e.g. for solids) the pressure (volume) and/or temperature of the system can oscillate
undesirably when a Nose/Hoover barostat is applied. The optional drag keyword will damp these oscillation:s
although it alters the Nose/Hoover equations. A value of 0.0 (no drag) leaves the Nose/Hoover formalism
unchanged. A non-zero value adds a drag term; the larger the value specified, the greater the damping effe
Performing a short run and monitoring the pressure is the best way to determine if the drag term is working.
Typically a value between 0.2 to 2.0 is sufficient to damp oscillations after a few periods.

For all pressure styles, the simulation box stays rectangular in shape. Parinello-Rahman boundary conditio
(tilted box) are not implemented in LAMMPS.

For all styles, the Pdamp parameter operates like the Tdamp parameter, determining the time scale on whic
pressure is relaxed. For example, a value of 1000.0 means to relax the pressure in a timespan of (roughly)
1000 time units (tau or fmsec or psec — see the units command).

This fix computes a temperature and pressure each timestep. To do this, the fix creates its own computes o
style "temp" and "pressure”, as if these commands had been issued:

compute fix—ID_temp group-ID temp

compute fix—ID_press group—ID pressure fix—ID_temp

See the compute temp and compute pressure commands for details. Note that the IDs of the new computes
the fix—1D with underscore + "temp" or "press" appended and the group for the new computes is the same a
the fix group.

Note that these are NOT the computes used by thermodynamic output (see the thermo_style command) wit
ID = thermo_temp and thermo_pressure. This means you can change the attributes of this fix's temperature
pressure via the compute _modify command or print this temperature or pressure during thermodyanmic
output via the thermo_style custom command using the appropriate compute-ID. It also means that changir
attributes of thermo_temp or thermo_pressure will have no effect on this fix.

Restart, fix_modify, thermo output, run start/stop, minimize info:
This fix writes the state of the Nose/Hoover barostat to binary restart files. See the read restart command fc

info on how to re—specify a fix in an input script that reads a restart file, so that the operation of the fix
continues in an uninterrupted fashion.

fix nph command 230

The fix_modify temp and press options are supported by this fix. You can use them to_assign a compute yot
have defined to this fix which will be used in its thermostatting or barostatting procedure. If you do this, note
that the kinetic energy derived from the compute temperature should be consistent with the virial term
computed using all atoms for the pressure. LAMMPS will warn you if you choose to compute temperature ot
a subset of atoms.

The fix_modify energy option is supported by this fix to add the energy change induced by Nose/Hoover
barostatting to the system's potential energy as part of thermodynamic output.

The energy change can be printed as part of thermodynamic output via the keyword f_ID, where ID is the
fix—1D of this fix. See the thermo_style custom command for details.

This fix can ramp its target pressure over multiple runs, using the start and stop keywords of the run
command. See the run command for details of how to do this.

This fix is not invoked during energy minimization.
Restrictions:

Any dimension being adjusted by this fix must be periodic. A dimension whose target pressures are specifie
as NULL can be non-periodic or periodic.

You should not use fix nvt with this fix. Instead, use fix npt if you want to control both temperature and
pressure via Nose/Hoover.

Related commands:

fix nve, fix npt, fix_modify

Default:

The keyword defaults are drag = 0.0 and dilate = all.

fix nph command 231

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

fix npt command

Syntax:

fix ID group—ID npt Tstart Tstop Tdamp p-style args keyword value ...

« ID, group-ID are documented_in fix command

* npt = style name of this fix command

« Tstart, Tstop = desired temperature at start/end of run
« Tdamp = temperature damping parameter (time units)
e p—style = xyz or Xy or yz or Xz or aniso

Xyz args = Pstart Pstop Pdamp
Pstart,Pstop = desired pressure at start/end of run (pressure units)
Pdamp = pressure damping parameter (time units)
Xy Or yz Or Xz or aniso args = Px_start Px_stop Py_start Py_stop Pz_start Pz_stop Pdamp
Px_start,Px_stop,... = desired pressure in x,y,z at start/end of run (pressure units)
Pdamp = pressure damping parameter (time units)

 zero or more keyword/value pairs may be appended to the args
» keyword = drag or dilate

drag value = drag factor added to barostat/thermostat (0.0 = no drag)
dilate value = all or partial

Examples:

fix 1 all npt 300.0 300.0 100.0 xyz 0.0 0.0 1000.0

fix 2 all npt 300.0 300.0 100.0 xz 5.0 5.0 NULL NULL 5.0 5.0 1000.0

fix 2 all npt 300.0 300.0 100.0 xz 5.0 5.0 NULL NULL 5.0 5.0 1000.0 drag 0.2

fix 2 water npt 300.0 300.0 100.0 aniso 0.0 0.0 0.0 0.0 NULL NULL 1000.0 dilate partial

Description:

Perform constant NPT integration to update positions and velocities each timestep for atoms in the group
using a Nose/Hoover temperature thermostat and Nose/Hoover pressure barostat. P is pressure; T is
temperature. This creates a system trajectory consistent with the isothermal-isobaric ensembile.

The desired temperature at each timestep is a ramped value during the run from Tstart to Tstop. The Tdamj
parameter is specified in time units and determines how rapidly the temperature is relaxed. For example, a
value of 100.0 means to relax the temperature in a timespan of (roughly) 100 time units (tau or fmsec or pse
- see the units command).

The atoms in the fix group are the only ones whose velocities and positions are updated by the
velocity/position update portion of the NPT integration.

Regardless of what atoms are in the fix group, a global pressure is computed for all atoms. Similarly, when t
size of the simulation box is changed, all atoms are re—scaled to new positions, unless the keyword dilate is
specified with a value of partial, in which case only the atoms in the fix group are re—scaled. The latter can
useful for leaving the coordinates of atoms in a solid substrate unchanged and controlling the pressure of a
surrounding fluid.

fix npt command 232

http://lammps.sandia.gov

The pressure can be controlled in one of several styles, as specified by the p—style argument. In each case,
desired pressure at each timestep is a ramped value during the run from the starting value to the end value.

Style xyz means couple all 3 dimensions together when pressure is computed (isotropic pressure), and
dilate/contract the 3 dimensions together.

Styles xy or yz or xz means that the 2 specified dimensions are coupled together, both for pressure
computation and for dilation/contraction. The 3rd dimension dilates/contracts independently, using its
pressure component as the driving force.

For style aniso, all 3 dimensions dilate/contract independently using their individual pressure components as
the 3 driving forces.

For any of the styles except xyz, any of the independent pressure components (e.g. z in Xy, or any dimensio
aniso) can have their target pressures (both start and stop values) specified as NULL. This means that no
pressure control is applied to that dimension so that the box dimension remains unchanged.

In some cases (e.g. for solids) the pressure (volume) and/or temperature of the system can oscillate
undesirably when a Nose/Hoover barostat and thermostat is applied. The optional drag keyword will damp
these oscillations, although it alters the Nose/Hoover equations. A value of 0.0 (no drag) leaves the
Nose/Hoover formalism unchanged. A non-zero value adds a drag term; the larger the value specified, the
greater the damping effect. Performing a short run and monitoring the pressure and temperature is the best
way to determine if the drag term is working. Typically a value between 0.2 to 2.0 is sufficient to damp
oscillations after a few periods.

For all pressure styles, the simulation box stays rectangular in shape. Parinello-Rahman boundary conditior
(tilted box) are not implemented in LAMMPS.

For all styles, the Pdamp parameter operates like the Tdamp parameter, determining the time scale on whic
pressure is relaxed. For example, a value of 1000.0 means to relax the pressure in a timespan of (roughly)
1000 time units (tau or fmsec or psec — see the units command).

This fix computes a temperature and pressure each timestep. To do this, the fix creates its own computes o
style "temp" and "pressure”, as if these commands had been issued:

compute fix—ID_temp group-ID temp
compute fix—ID_press group—ID pressure fix-1D_temp

See the compute temp and compute pressure commands for details. Note that the IDs of the new computes
the fix—ID with underscore + "temp" or "press" appended and the group for the new computes is the same a
the fix group.

Note that these are NOT the computes used by thermodynamic output (see the thermo_style command) wit
ID = thermo_temp and thermo_pressure. This means you can change the attributes of this fix's temperature
pressure via the compute_modify command or print this temperature or pressure during thermodyanmic
output via the thermo_style custom command using the appropriate compute—ID. It also means that changir
attributes of thermo_temp or thermo_pressure will have no effect on this fix.

Restart, fix_maodify, thermo output, run start/stop, minimize info:

fix npt command 233

This fix writes the state of the Nose/Hoover thermostat and baragstat to binary restart files. See the read_res
command for info on how to re—specify a fix in an input script that reads a restart file, so that the operation o
the fix continues in an uninterrupted fashion.

The fix_modify temp and press options are supported by this fix. You can use them to_assign a compute yot
have defined to this fix which will be used in its thermostatting or barostatting procedure. If you do this, note
that the kinetic energy derived from the compute temperature should be consistent with the virial term
computed using all atoms for the pressure. LAMMPS will warn you if you choose to compute temperature ot
a subset of atoms.

The fix_modify energy option is supported by this fix to add the energy change induced by Nose/Hoover
thermostatting and barostatting to the system's potential energy as part of thermodynamic output.

The energy change can be printed as part of thermodynamic output via the keyword f_ID, where ID is the
fix—1D of this fix. See the thermo_style custom command for details.

This fix can ramp its target temperature and pressure over multiple runs, using the start and stop keywords
the_run command. See the run command for details of how to do this.

This fix is not invoked during energy minimization.
Restrictions:

Any dimension being adjusted by this fix must be periodic. A dimension whose target pressures are specifie
as NULL can be non—periodic or periodic.

The final Tstop cannot be 0.0 since it would make the target T = 0.0 at some timestep during the simulation
which is not allowed in the Nose/Hoover formulation.

Related commands:

fix nve, fix nvt, fix nph, fix_modify

Default:

The keyword defaults are drag = 0.0 and dilate = all.

fix npt command 234

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

fix npt/asphere command

Syntax:

fix ID group—ID npt/asphere Tstart Tstop Tdamp p-style args keyword value ...

« ID, group-ID are documented_in fix command
 npt/asphere = style name of this fix command

« Tstart, Tstop = desired temperature at start/end of run
« Tdamp = temperature damping parameter (time units)
e p—style = xyz or Xy or yz or Xz or aniso

Xyz args = Pstart Pstop Pdamp
Pstart,Pstop = desired pressure at start/end of run (pressure units)
Pdamp = pressure damping parameter (time units)
Xy Or yz Or Xz or aniso args = Px_start Px_stop Py_start Py_stop Pz_start Pz_stop Pdamp
Px_start,Px_stop,... = desired pressure in x,y,z at start/end of run (pressure units)
Pdamp = pressure damping parameter (time units)

 zero or more keyword/value pairs may be appended to the args
» keyword = drag or dilate

drag value = drag factor added to barostat/thermostat (0.0 = no drag)
dilate value = all or partial

Examples:

fix 1 all npt/asphere 300.0 300.0 100.0 xyz 0.0 0.0 1000.0

fix 2 all npt/asphere 300.0 300.0 100.0 xz 5.0 5.0 NULL NULL 5.0 5.0 1000.0

fix 2 all npt/asphere 300.0 300.0 100.0 xz 5.0 5.0 NULL NULL 5.0 5.0 1000.0 drag 0.2

fix 2 water npt/asphere 300.0 300.0 100.0 aniso 0.0 0.0 0.0 0.0 NULL NULL 1000.0 dilate partial

Description:

Perform constant NPT integration to update positions, velocities, and angular velocity each timestep for
aspherical or ellipsoidal particles in the group using a Nose/Hoover temperature thermostat and Nose/Hoov
pressure barostat. P is pressure; T is temperature. This creates a system trajectory consistent with the
isothermal-isobaric ensemble.

The desired temperature at each timestep is a ramped value during the run from Tstart to Tstop. The Tdamj
parameter is specified in time units and determines how rapidly the temperature is relaxed. For example, a
value of 100.0 means to relax the temperature in a timespan of (roughly) 100 time units (tau or fmsec or pse
- see the units command).

The particles in the fix group are the only ones whose velocities and positions are updated by the
velocity/position update portion of the NPT integration.

Regardless of what particles are in the fix group, a global pressure is computed for all particles. Similarly,
when the size of the simulation box is changed, all particles are re—scaled to new positions, unless the
keyword dilate is specified with a value of partial, in which case only the particles in the fix group are
re—scaled. The latter can be useful for leaving the coordinates of particles in a solid substrate unchanged ar
controlling the pressure of a surrounding fluid.

fix npt/asphere command 235

http://lammps.sandia.gov

The pressure can be controlled in one of several styles, as specified by the p—style argument. In each case,
desired pressure at each timestep is a ramped value during the run from the starting value to the end value.

Style xyz means couple all 3 dimensions together when pressure is computed (isotropic pressure), and
dilate/contract the 3 dimensions together.

Styles xy or yz or xz means that the 2 specified dimensions are coupled together, both for pressure
computation and for dilation/contraction. The 3rd dimension dilates/contracts independently, using its
pressure component as the driving force.

For style aniso, all 3 dimensions dilate/contract independently using their individual pressure components as
the 3 driving forces.

For any of the styles except xyz, any of the independent pressure components (e.g. z in Xy, or any dimensio
aniso) can have their target pressures (both start and stop values) specified as NULL. This means that no
pressure control is applied to that dimension so that the box dimension remains unchanged.

In some cases (e.g. for solids) the pressure (volume) and/or temperature of the system can oscillate
undesirably when a Nose/Hoover barostat and thermostat is applied. The optional drag keyword will damp
these oscillations, although it alters the Nose/Hoover equations. A value of 0.0 (no drag) leaves the
Nose/Hoover formalism unchanged. A non-zero value adds a drag term; the larger the value specified, the
greater the damping effect. Performing a short run and monitoring the pressure and temperature is the best
way to determine if the drag term is working. Typically a value between 0.2 to 2.0 is sufficient to damp
oscillations after a few periods.

For all pressure styles, the simulation box stays rectangular in shape. Parinello-Rahman boundary conditior
(tilted box) are not yet implemented in LAMMPS.

For all styles, the Pdamp parameter operates like the Tdamp parameter, determining the time scale on whic
pressure is relaxed. For example, a value of 1000.0 means to relax the pressure in a timespan of (roughly)
1000 time units (tau or fmsec or psec — see the units command).

This fix computes a temperature and pressure each timestep. To do this, the fix creates its own computes o
style "temp/asphere” and "pressure”, as if these commands had been issued:

compute fix—ID_temp group-ID temp/asphere
compute fix—ID_press group—ID pressure fix-1D_temp

See the compute temp/asphere_and compute pressure commands for details. Note that the IDs of the new
computes are the fix—ID with underscore + "temp" or "press" appended and the group for the new computes
the same as the fix group.

Note that these are NOT the computes used by thermodynamic output (see the thermo_style command) wit
ID = thermo_temp and thermo_press. This means you can change the attributes of this fix's temperature or
pressure via the compute_modify command or print this temperature or pressure during thermodyanmic
output via the thermo_style custom command using the appropriate compute—ID. It also means that changir
attributes of thermo_temp or thermo_press will have no effect on this fix.

Restart, fix_maodify, thermo output, run start/stop, minimize info:

fix npt/asphere command 236

This fix writes the state of the Nose/Hoover thermostat and baragstat to binary restart files. See the read_res
command for info on how to re—specify a fix in an input script that reads a restart file, so that the operation o
the fix continues in an uninterrupted fashion.

The fix_modify temp and press options are supported by this fix. You can use them to_assign a compute yot
have defined to this fix which will be used in its thermostatting or barostatting procedure. If you do this, note
that the kinetic energy derived from the compute temperature should be consistent with the virial term
computed using all atoms for the pressure. LAMMPS will warn you if you choose to compute temperature ot
a subset of atoms.

The fix_modify energy option is supported by this fix to add the energy change induced by Nose/Hoover
thermostatting and barostatting to the system's potential energy as part of thermodynamic output.

The energy change can be printed as part of thermodynamic output via the keyword f_ID, where ID is the
fix—1D of this fix. See the thermo_style custom command for details.

This fix can ramp its target temperature and pressure over multiple runs, using the start and stop keywords
the_run command. See the run command for details of how to do this.

This fix is not invoked during energy minimization.
Restrictions:

This fix is part of the "asphere" package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

Any dimension being adjusted by this fix must be periodic. A dimension whose target pressures are specifie
as NULL can be non—periodic or periodic.

The final Tstop cannot be 0.0 since it would make the target T = 0.0 at some timestep during the simulation
which is not allowed in the Nose/Hoover formulation.

Related commands:

fix npt, fix nve_asphere, fix_modify

Default:

The keyword defaults are drag = 0.0 and dilate = all.

fix npt/asphere command 237

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

fix nve command
Syntax:
fix ID group—ID nve

« ID, group-ID are documented_in fix command
e nve = style name of this fix command

Examples:

fix 1 all nve
Description:

Perform constant NVE updates of position and velocity for atoms in the group each timestep. V is volume; E
is energy. This creates a system trajectory consistent with the microcanonical ensemble.

Restart, fix_modify, thermo output, run start/stop, minimize info:
No information about this fix is written to binary restart files. None of the fix_modify options are relevant to

this fix. No quantities calculated by this fix can be output by the thermo_style custom command. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked

during_energy minimization.

Restrictions: none

Related commands:

fix nvt, fix npt

Default: none

fix nve command 238

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

fix nve/asphere command
Syntax:
fix ID group—ID nve/asphere

« ID, group-ID are documented_in fix command
* nve/asphere = style name of this fix command

Examples:

fix 1 all nve/asphere

Description:

Perform constant NVE updates of position, velocity, orientation, and angular velocity for aspherical or
ellipsoidal particles in the group each timestep. V is volume; E is energy. This creates a system trajectory
consistent with the microcanonical ensemble.

Restart, fix_modify, thermo output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to

this fix. No quantities calculated by this fix can be output by the thermo_style custom command. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked

during_energy minimization.

Restrictions:

This fix is part of the "asphere” package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

Related commands:
fix nve

Default: none

fix nve/asphere command 239

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

fix nve/dipole command
Syntax:
fix ID group—ID nve/dipole

« ID, group-ID are documented_in fix command
« nve/dipole = style name of this fix command

Examples:

fix 1 all nve/dipole

Description:

Perform constant NVE updates of position, velocity, orientation, and angular velocity for particles with point
dipole moments in the group each timestep. V is volume; E is energy. This creates a system trajectory
consistent with the microcanonical ensemble.

Restart, fix_modify, thermo output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to

this fix. No quantities calculated by this fix can be output by the thermo_style custom command. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked

during_energy minimization.

Restrictions:

This fix is part of the "dipole” package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

Related commands:
fix nve

Default: none

fix nve/dipole command 240

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

fix nve/gran command
Syntax:
fix ID group—ID nve/gran

« ID, group-ID are documented_in fix command
e nve/gran = style name of this fix command

Examples:

fix 1 all nve/gran

Description:

Perform constant NVE updates each timestep on a group of atoms of atom style granular. V is volume; E is
energy. Granular atoms store rotational information as well as position and velocity, so this integrator update
translational and rotational degrees of freedom due to forces and torques.

Restart, fix_modify, thermo output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to

this fix. No quantities calculated by this fix can be output by the thermo_style custom command. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked

during_energy minimization.

Restrictions: none

This fix is part of the "granular” package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

Related commands:

atom_style granular

Default: none

fix nve/gran command 241

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

fix nve/noforce command
Syntax:
fix ID group—ID nve

« ID, group-ID are documented_in fix command
* nve/noforce = style name of this fix command

Examples:

fix 3 wall nve/noforce

Description:

Perform updates of position, but not velocity for atoms in the group each timestep. In other words, the force
on the atoms is ignored and their velocity is not updated. The atom velocities are used to update their

positions.

This can be useful for wall atoms, when you set their velocities, and want the wall to move (or stay stationar
in a prescribed fashion.

This can also be accomplished via_the fix setforce command, but with fix nve/noforce, the forces on the wall
atoms are unchanged, and can thus be printed by the dump command or queried with an equal-style variak
that uses the fcm() group function to compute the total force on the group of atoms.

Restart, fix_modify, thermo output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to

this fix. No quantities calculated by this fix can be output by the thermo_style custom command. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked

during_energy minimization.

Restrictions: none
Related commands:
fix nve

Default: none

fix nve/noforce command 242

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

fix nvt command

Syntax:
fix ID group—ID nvt Tstart Tstop Tdamp keyword value ...

« ID, group-ID are documented_in fix command

* nvt = style name of this fix command

« Tstart, Tstop = desired temperature at start/end of run

« Tdamp = temperature damping parameter (time units)

 zero or more keyword/value pairs may be appended to the args
« keyword = drag

drag value = drag factor added to thermostat (0.0 = no drag)

Examples:

fix 1 all nvt 300.0 300.0 100.0
fix 1 all nvt 300.0 300.0 100.0 drag 0.2

Description:

Perform constant NVT integration to update positions and velocities each timestep for atoms in the group
using a Nose/Hoover temperature thermostat. V is volume; T is temperature. This creates a system trajectol
consistent with the canonical ensemble.

The desired temperature at each timestep is a ramped value during the run from Tstart to Tstop. The Tdamj
parameter is specified in time units and determines how rapidly the temperature is relaxed. For example, a
value of 100.0 means to relax the temperature in a timespan of (roughly) 100 time units (tau or fmsec or pse
- see the units command).

In some cases (e.g. for solids) the temperature of the system can oscillate undesirably when a Nose/Hoovel
thermostat is applied. The optional drag keyword will damp these oscillations, although it alters the
Nose/Hoover equations. A value of 0.0 (no drag) leaves the Nose/Hoover formalism unchanged. A non-zer
value adds a drag term; the larger the value specified, the greater the damping effect. Performing a short ru
and monitoring the temperature is the best way to determine if the drag term is working. Typically a value
between 0.2 to 2.0 is sufficient to damp oscillations after a few periods.

This fix computes a temperature each timestep. To do this, the fix creates its own compute of style "temp",
if this command had been issued:

compute fix—ID_temp group-ID temp

See the compute temp command for details. Note that the ID of the new compute is the fix—1D with
underscore + "temp" appended and the group for the new compute is the same as the fix group.

Note that this is NOT the compute used by thermodynamic output (see the thermo_style command) with ID

thermo_temp. This means you can change the attributes of this fix's temperature (e.g. its degrees—of-freed
via the_compute_modify command or print this temperature during thermodyanmic output via the

fix nvt command 243

http://lammps.sandia.gov

thermo_style custom command using the appropriate compute—ID. It also means that changing attributes of
thermo_temp will have no effect on this fix.

Restart, fix_maodify, thermo output, run start/stop, minimize info:
This fix writes the state of the Nose/Hoover thermostat to binary restart files. See the read_restart commanc
for info on how to re—specify a fix in an input script that reads a restart file, so that the operation of the fix

continues in an uninterrupted fashion.

The fix_modify temp option is supported by this fix. You can use it to assign a compute you have defined to
this fix which will be used in its thermostatting procedure.

The fix_modify energy option is supported by this fix to add the energy change induced by Nose/Hoover
thermostatting to the system's potential energy as part of thermodynamic output.

The energy change can be printed as part of thermodynamic output via the keyword f_ID, where ID is the
fix—1D of this fix. See the thermo_style custom command for details.

This fix can ramp its target temperature over multiple runs, using the start and stop keywords of the run
command. See the run command for details of how to do this.

This fix is not invoked during energy minimization.
Restrictions:

The final Tstop cannot be 0.0 since it would make the target T = 0.0 at some timestep during the simulation
which is not allowed in the Nose/Hoover formulation.

Related commands:

fix nve, fix npt, fix temp/rescale, fix langevin, fix_modify, temperature

Default:

The keyword defaults are drag = 0.0.

fix nvt command 244

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

fix nvt/asphere command

Syntax:

fix ID group—ID nvt/asphere Tstart Tstop Tdamp keyword value ...

« ID, group-ID are documented_in fix command

* nvt/asphere = style name of this fix command

« Tstart, Tstop = desired temperature at start/end of run

« Tdamp = temperature damping parameter (time units)

 zero or more keyword/value pairs may be appended to the args
« keyword = drag

drag value = drag factor added to thermostat (0.0 = no drag)

Examples:

fix 1 all nvt/asphere 300.0 300.0 100.0
fix 1 all nvt/asphere 300.0 300.0 100.0 drag 0.2

Description:

Perform constant NVT integration to update positions, velocities, and angular velocities each timestep for
aspherical or ellipsoidal particles in the group using a Nose/Hoover temperature thermostat. V is volume; T |
temperature. This creates a system trajectory consistent with the canonical ensemble.

The desired temperature at each timestep is a ramped value during the run from Tstart to Tstop. The Tdamj
parameter is specified in time units and determines how rapidly the temperature is relaxed. For example, a
value of 100.0 means to relax the temperature in a timespan of (roughly) 100 time units (tau or fmsec or pse
- see the units command).

In some cases (e.g. for solids) the temperature of the system can oscillate undesirably when a Nose/Hoovel
thermostat is applied. The optional drag keyword will damp these oscillations, although it alters the
Nose/Hoover equations. A value of 0.0 (no drag) leaves the Nose/Hoover formalism unchanged. A non-zer
value adds a drag term; the larger the value specified, the greater the damping effect. Performing a short ru
and monitoring the temperature is the best way to determine if the drag term is working. Typically a value
between 0.2 to 2.0 is sufficient to damp oscillations after a few periods.

This fix computes a temperature each timestep. To do this, the fix creates its own compute of style
"temp/asphere", as if this command had been issued:

compute fix—ID_temp group-ID temp/asphere

See the compute temp/asphere command for details. Note that the ID of the new compute is the fix-ID with
underscore + "temp" appended and the group for the new compute is the same as the fix group.

Note that this is NOT the compute used by thermodynamic output (see the thermo_style command) with ID

thermo_temp. This means you can change the attributes of this fix's temperature (e.g. its degrees—of-freed
via the_compute_modify command or print this temperature during thermodyanmic output via the

fix nvt/asphere command 245

http://lammps.sandia.gov

thermo_style custom command using the appropriate compute—ID. It also means that changing attributes of
thermo_temp will have no effect on this fix.

Restart, fix_maodify, thermo output, run start/stop, minimize info:
This fix writes the state of the Nose/Hoover thermostat to binary restart files. See the read_restart commanc
for info on how to re—specify a fix in an input script that reads a restart file, so that the operation of the fix

continues in an uninterrupted fashion.

The fix_modify temp option is supported by this fix. You can use it to assign a compute you have defined to
this fix which will be used in its thermostatting procedure.

The fix_modify energy option is supported by this fix to add the energy change induced by Nose/Hoover
thermostatting to the system's potential energy as part of thermodynamic output.

The energy change can be printed as part of thermodynamic output via the keyword f_ID, where ID is the
fix—1D of this fix. See the thermo_style custom command for details.

This fix can ramp its target temperature over multiple runs, using the start and stop keywords of the run
command. See the run command for details of how to do this.

This fix is not invoked during energy minimization.
Restrictions:

This fix is part of the "asphere" package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

The final Tstop cannot be 0.0 since it would make the target T = 0.0 at some timestep during the simulation
which is not allowed in the Nose/Hoover formulation.

Related commands:

fix nvt, fix nve_asphere, fix npt_asphere, fix_modify

Default:

The keyword defaults are drag = 0.0.

fix nvt/asphere command 246

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

fix nvt/sllod command

Syntax:

fix ID group—ID nvt/sllod Tstart Tstop Tdamp keyword value ...

« ID, group-ID are documented_in fix command

 nvt/sllod = style name of this fix command

« Tstart, Tstop = desired temperature at start/end of run

« Tdamp = temperature damping parameter (time units)

 zero or more keyword/value pairs may be appended to the args
« keyword = drag

drag value = drag factor added to thermostat (0.0 = no drag)

Examples:

fix 1 all nvt/sllod 300.0 300.0 100.0
fix 1 all nvt/sllod 300.0 300.0 100.0 drag 0.2

Description:

Perform constant NVT integration to update positions and velocities each timestep for atoms in the group
using a Nose/Hoover temperature thermostat. V is volume; T is temperature. This creates a system trajectol
consistent with the canonical ensemble.

This thermostat is used for a simulation box that is changing size and/or shape, for example in a
non-equilibrium MD (NEMD) simulation. The size/shape change is induced by use of the fix deform
command, so each point in the simulation box can be thought of as having a "streaming" velocity. This
position—dependent streaming velocity is subtracted from each atom's actual velocity to yield a thermal
velocity which is used for temperature computation and thermostatting. For example, if the box is being
sheared in X, relative to y, then points at the bottom of the box (low y) have a small x velocity, while points a
the top of the box (hi y) have a large x velocity. These velocities do not contribute to the thermal
"temperature” of the atom.

IMPORTANT NOTE_Eix deform has an option for remapping either atom coordinates or velocities to the
changing simulation box. To use fix nvt/sllod, fix deform should NOT remap atom positions, because fix
nvt/sllod adjusts the atom positions and velocities to create a velocity profile that matches the changing box
size/shape. Fix deform SHOULD remap atom velocities when atoms cross periodic boundaries since that is
consistent with maintaining the velocity profile created by fix nvt/sllod. LAMMPS will give an error if this
setting is not consistent.

The SLLOD equations of motion coupled to a Nose/Hoover thermostat are discussed in (Tuckerman) (eqs 4
and 5), which is what is implemented in LAMMPS in a velocity Verlet formulation.

The desired temperature at each timestep is a ramped value during the run from Tstart to Tstop. The Tdamj
parameter is specified in time units and determines how rapidly the temperature is relaxed. For example, a
value of 100.0 means to relax the temperature in a timespan of (roughly) 100 time units (tau or fmsec or pse
- see the units command).

fix nvt/sllod command 247

http://lammps.sandia.gov

In some cases (e.g. for solids) the temperature of the system can oscillate undesirably when a Nose/Hoovel
thermostat is applied. The optional drag keyword will damp these oscillations, although it alters the
Nose/Hoover equations. A value of 0.0 (no drag) leaves the Nose/Hoover formalism unchanged. A non-zer
value adds a drag term; the larger the value specified, the greater the damping effect. Performing a short ru
and monitoring the temperature is the best way to determine if the drag term is working. Typically a value
between 0.2 to 2.0 is sufficient to damp oscillations after a few periods.

This fix computes a temperature each timestep. To do this, the fix creates its own compute of style
"temp/deform", as if this command had been issued:

compute fix—1D_temp group—ID temp/deform

See the compute temp/deform command for details. Note that the ID of the new compute is the fix—ID with
underscore + "temp" appended and the group for the new compute is the same as the fix group.

Note that this is NOT the compute used by thermodynamic output (see the thermo_style command) with ID
thermo_temp. This means you can change the attributes of this fix's temperature (e.g. its degrees—of-freed
via the_compute_modify command or print this temperature during thermodyanmic output via the
thermo_style custom command using the appropriate compute—ID. It also means that changing attributes of
thermo_temp will have no effect on this fix.

Restart, fix_maodify, thermo output, run start/stop, minimize info:

This fix writes the state of the Nose/Hoover thermostat to binary restart files. See the read_restart commanc
for info on how to re—specify a fix in an input script that reads a restart file, so that the operation of the fix
continues in an uninterrupted fashion.

The fix_modify temp option is supported by this fix. You can use it to assign a compute you have defined to
this fix which will be used in its thermostatting procedure.

The fix_modify energy option is supported by this fix to add the energy change induced by Nose/Hoover
thermostatting to the system's potential energy as part of thermodynamic output.

The energy change can be printed as part of thermodynamic output via the keyword f_ID, where ID is the
fix—1D of this fix. See the thermo_style custom command for details.

This fix can ramp its target temperature over multiple runs, using the start and stop keywords of the run
command. See the run command for details of how to do this.

This fix is not invoked during energy minimization.
Restrictions:

The final Tstop cannot be 0.0 since it would make the target T = 0.0 at some timestep during the simulation
which is not allowed in the Nose/Hoover formulation.

Related commands:

fix nve, fix npt, fix npt, fix temp/rescale, fix langevin, fix_modify, temperature

Default:

fix nvt/sllod command 248

The keyword defaults are drag = 0.0.

(Tuckerman) Tuckerman, Mundy, Balasubramanian, Klein, J Chem Phys, 106, 5615 (1997).

fix nvt/sllod command 249

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

fix orient/fcc command
fix ID group—ID orient/fcc nstats dir alat dE cutlo cuthi fileO filel

« ID, group-ID are documented_in fix command

* nstats = print stats every this many steps, 0 = never

« dir = 0/1 for which crystal is used as reference

« alat = fcc cubic lattice constant (distance units)

« dE = energy added to each atom (energy units)

« cutlo,cuthi = values between 0.0 and 1.0, cutlo < cuthi
« file0,filel = files that specify orientation of each grain

Examples:

fix gb all orient/fcc 0 1 4.032008 0.001 0.25 0.75 xi.vec chi.vec
Description:

The fix applies an orientation—dependent force to atoms near a planar grain boundary which can be used to
induce grain boundary migration (in the direction perpendicular to the grain boundary plane). The motivation
and explanation of this force and its application are described in (Janssens). The force is only applied to ato
in the fix group.

The basic idea is that atoms in one grain (on one side of the boundary) have a potential energy dE added tc
them. Atoms in the other grain have 0.0 potential energy added. Atoms near the boundary (whose neighbor
environment is intermediate between the two grain orientations) have an energy between 0.0 and dE added
This creates an effective driving force to reduce the potential energy of atoms near the boundary by pushing
them towards one of the grain orientations. For dir = 1 and dE > 0, the boundary will thus move so that the
grain described by fileO grows and the grain described by filel shrinks. Thus this fix is designed for
simulations of two—grain systems, either with one grain boundary and free surfaces parallel to the boundary
or a system with periodic boundary conditions and two equal and opposite grain boundaries. In either case,
entire system can displace during the simulation, and such motion should be accounted for in measuring the
grain boundary velocity.

The potential energy added to atom | is given by these formulas

fix orient/fcc command 250

http://lammps.sandia.gov

flow = cutlofyy (3)

cuthi &gy (4)

e ¢
Shigh S low

w; = 0 for & < Elow
.1 — cos(2w;) g s i3 2
- P for Qlow < i < Shigh 'n()/'

= dE for :hi:h < &

which are fully explained in_(Janssens). The order parameter Xi for atom | in equation (1) is a sum over the :
nearest neighbors of atom I. Rj is the vector from atom | to its neighbor J, and RIj is a vector in the reference
(perfect) crystal. That is, if dir = 0/1, then RIj is a vector to an atom coord from file 0/1. Equation (2) gives the
expected value of the order parameter XilJ in the other grain. Hi and lo cutoffs are defined in equations (3)
and (4), using the input parameters cutlo and cuthi as threshholds to avoid adding grain boundary energy wi
the deviation in the order parameter from 0 or 1 is small (e.g. due to thermal fluctuations in a perfect crystal)
The added potential energy Ui for atom | is given in equation (6) where it is interpolated between 0 and dE
using the two threshhold Xi values and the Wi value of equation (5).

The derivative of this energy expression gives the force on each atom which thus depends on the orientatiol
of its neighbors relative to the 2 grain orientations. Only atoms near the grain boundary feel a net force whic
tends to drive them to one of the two grain orientations.

In equation (1), the reference vector used for each neigbbor is the reference vector closest to the actual
neighbor position. This means it is possible two different neighbors will use the same reference vector. In
such cases, the atom in question is far from a perfect orientation and will likely receive the full dE addition, s
the effect of duplicate reference vector usage is small.

The dir parameter determines which grain wants to grow at the expense of the other. A value of 0 means th
first grain will shrink; a value of 1 means it will grow. This assumes that dE is positive. The reverse will be
true if dE is negative.

The alat parameter is the cubic lattice constant for the fcc material and is only used to compute a cutoff
distance of 1.57 * alat / sqrt(2) for finding the 12 nearest neighbors of each atom (which should be valid for ¢
fce crystal). A longer/shorter cutoff can be imposed by adjusting alat. If a particular atom has less than 12
neighbors within the cutoff, the order parameter of equation (1) is effectively multiplied by 12 divided by the
actual number of neighbors within the cutoff.

fix orient/fcc command 251

The dE parameter is the maximum amount of additional energy added to each atom in the grain which want
to shrink.

The cutlo and cuthi parameters are used to reduce the force added to bulk atoms in each grain far away frol
the boundary. An atom in the bulk surrounded by neighbors at the ideal grain orientation would compute an
order parameter of 0 or 1 and have no force added. However, thermal vibrations in the solid will cause the
order parameters to be greater than O or less than 1. The cutoff parameters mask this effect, allowing forces
only be added to atoms with order—parameters between the cutoff values.

FileO and filel are filenames for the two grains which each contain 6 vectors (6 lines with 3 values per line)
which specify the grain orientations. Each vector is a displacement from a central atom (0,0,0) to a nearest
neighbor atom in an fcc lattice at the proper orientation. The vector lengths should all be identical since an f
lattice has a coordination number of 12. Only 6 are listed due to symmetry, so the list must include one from
each pair of equal-and-opposite neighbors. A pair of orientation files for a Sigma=5 tilt boundary are show
below.

Restart, fix_maodify, thermo output, run start/stop, minimize info:

No information about this fix is written to binary restart files.

The fix_modify energy option is supported by this fix to add the potential energy of atom interactions with the
grain boundary driving force to the system's potential energy as part of thermodynamic output.

The atom/grain—boundary interaction energy can be printed as part of thermodynamic output via the keywor
f ID, where ID is the fix—ID of this fix. See the thermo_style custom command for details.

No parameter of this fix can be used with the start/stop keywords _of the run command. This fix is not invoke
during_energy minimization.

Restrictions:
This fix should only be used with fcc lattices.
Related commands:

fix_modify

Default: none

(Janssens) Janssens, Olmsted, Holm, Foiles, Plimpton, Derlet, Nature Materials, 5, 124-127 (2006).

For illustration purposes, here are example files that specify a Sigma=5 tilt boundary. This is for a lattice
constant of 3.5706 Angs.

fileO:

0.798410432046075 1.785300000000000 1.596820864092150
—0.798410432046075 1.785300000000000 -1.596820864092150
2.395231296138225 (0.000000000000000 0.798410432046075
0.798410432046075 0.000000000000000 -2.395231296138225

fix orient/fcc command 252

1.596820864092150 1.785300000000000 -0.798410432046075
1.596820864092150 -1.785300000000000 -0.798410432046075

filel:

—0.798410432046075 1.785300000000000 1.596820864092150
0.798410432046075 1.785300000000000 -1.596820864092150
0.798410432046075 0.000000000000000 2.395231296138225
2.395231296138225 0.000000000000000 -0.798410432046075
1.596820864092150 1.785300000000000 0.798410432046075
1.596820864092150 -1.785300000000000 0.798410432046075

fix orient/fcc command 253

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

fix planeforce command

Syntax:

fix ID group—ID planeforce xy z
« ID, group-ID are documented_in fix command
« lineforce = style name of this fix command

e Xy z = 3—-vector that is normal to the plane

Examples:

fix hold boundary planeforce 1.0 0.0 0.0
Description:

Adjust the forces on each atom in the group so that it's motion will be in the plane specified by the normal
vector (x,y,2). This is done by subtracting out components of force perpendicular to the plane.

If the initial velocity of the atom is 0.0 (or in the plane), then it should continue to move in the plane
thereafter.

Restart, fix_modify, thermo output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix. No quantities calculated by this fix can be output by the thermo_style custom command. No
parameter of this fix can be used with the start/stop keywords of the run command.

The forces due to this fix are imposed during an energy minimization, invoked_by the minimize command.
Restrictions: none

Related commands:

fix lineforce

Default: none

fix planeforce command 254

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

fix poems
Syntax:
fix ID group—ID poems keyword values

« ID, group-ID are documented_in fix command
e poems = style name of this fix command
« keyword = group or file or molecule

group values = list of group IDs
molecule values = none
file values = filename

Examples:

fix 3 fluid poems group clumpl clump2 clump3
fix 3 fluid poems file cluster.list

Description:

Treats one or more sets of atoms as coupled rigid bodies. This means that each timestep the total force anc
torque on each rigid body is computed and the coordinates and velocities of the atoms are updated so that
collection of bodies move as a coupled set. This can be useful for treating a large biomolecule as a collectio
of connected, coarse—grained particles.

The coupling, associated motion constraints, and time integration is performed by the software package

Parallelizable Open source Efficient Multibody Software (POEMS) which computes the constrained
rigid—body motion of articulated (jointed) multibody systems (Anderson). POEMS was written and is

distributed by Prof Kurt Anderson, his graduate student Rudranarayan Mukherjee, and other members of hi:
group at Rensselaer Polytechnic Institute (RPI). Rudranarayan developed the LAMMPS/POEMS interface.
For copyright information on POEMS and other details, please refer to the documents in the poems directon
distributed with LAMMPS.

This fix updates the positions and velocities of the rigid atoms with a constant—energy time integration, so y«
should not update the same atoms via other fixes (e.g. nve, nvt, npt, temp/rescale, langevin).

Each body must have a non—-degenerate inertia tensor, which means if must contain at least 3 non—colinear
atoms. Which atoms are in which bodies can be defined via several options.

For option group, each of the listed groups is treated as a rigid body. Note that only atoms that are also in th
fix group are included in each rigid body.

For option molecule, each set of atoms in the group with a different molecule ID is treated as a rigid body.

For option file, sets of atoms are read from the specified file and each set is treated as a rigid body. Each lin
of the file specifies a rigid body in the following format:

ID type atom1-ID atom2-ID atom3-ID ...

fix poems 255

http://lammps.sandia.gov
http://www.rpi.edu/~anderk5/lab

ID as an integer from 1 to M (the number of rigid bodies). Type is any integer; it is not used by the fix poems
command. The remaining arguments are IDs of atoms in the rigid body, each typically from 1 to N (the
number of atoms in the system). Only atoms that are also in the fix group are included in each rigid body.
Blank lines and lines that begin with '#' are skipped.

A connection between a pair of rigid bodies is inferred if one atom is common to both bodies. The POEMS
solver treats that atom as a spherical joint with 3 degrees of freedom. Currently, a collection of bodies can
only be connected by joints as a linear chain. The entire collection of rigid bodies can represent one or more
chains. Other connection topologies (tree, ring) are not allowed, but will be added later. Note that if no joints
exist, it is more efficient to use the fix rigid command to simulate the system.

When the poems fix is defined, it will print out statistics on the total # of clusters, bodies, joints, atoms
involved. A cluster in this context means a set of rigid bodies connected by joints.

For computational efficiency, you should turn off pairwise and bond interactions within each rigid body, as
they no longer contribute to the motion. The "neigh_modify exclude" and "delete_bonds" commands can be
used to do this if each rigid body is a group.

For computational efficiency, you should only define one fix poems which includes all the desired rigid
bodies. LAMMPS will allow multiple poems fixes to be defined, but it is more expensive.

The degrees—of-freedom removed by coupled rigid bodies are accounted for in temperature and pressure
computations. Similary, the rigid body contribution to the pressure virial is also accounted for. The latter is
only correct if forces within the bodies have been turned off, and there is only a single fix poems defined.
Restart, fix_maodify, thermo output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to

this fix. No quantities calculated by this fix can be output by the thermo_style custom command. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked

during_energy minimization.

Restrictions:

This fix is part of the "poems" package. It is only enabled if LAMMPS was built with that package, which
also requires the POEMS library be built and linked with LAMMPS. See the Making LAMMPS section for
more info.

Related commands:

fix rigid, delete_bonds, neigh_modify exclude

Default: none

(Anderson) Anderson, Mukherjee, Critchley, Ziegler, and Lipton "POEMS: Parallelizable Open-source
Efficient Multibody Software ", Engineering With Computers (2006). (link to paper)

fix poems 256

http://dx.doi.org/10.1007/s00366-006-0026-x

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

fix pour command

Syntax:

fix ID group—ID pour N type seed keyword values ...

« ID, group-ID are documented_in fix command

* pour = style name of this fix command

* N = # of atoms to insert

* type = atom type to assign to inserted atoms

* seed = random # seed

< one or more keyword/value pairs may be appended to args
« keyword = region or diam or dens or vol or rate or vel

region value = region-1D
region—ID = ID of region to use as insertion volume
diam values = lo hi
lo,hi = range of diameters for inserted particles (distance units)
dens values = lo hi
lo,hi = range of densities for inserted particles
vol values = fraction Nattempt
fraction = desired volume fraction for filling insertion volume
Nattempt = max # of insertion attempts per atom
rate value =V
V = z velocity (3d) or y velocity (2d) at which
insertion volume moves (velocity units)
vel values (3d) = vxlo vxhi vylo vyhi vz
vel values (2d) = vxlo vxhi vy
vxlo,vxhi = range of x velocities for inserted particles (velocity units)
vylo,vyhi = range of y velocities for inserted particles (velocity units)
vz = z velocity (3d) assigned to inserted particles (velocity units)
vy =y velocity (2d) assigned to inserted particles (velocity units)

Examples:

fix 3 all pour 1000 2 29494 region myblock
fix 2 all pour 10000 1 19985583 region disk vol 0.33 100 rate 1.0 diam 0.9 1.1

Description:

Insert particles into a granular run every few timesteps within a specified region until N particles have been
inserted. This is useful for simulating the pouring of particles into a container under the influence of gravity.

Inserted particles are assigned the specified atom type and are assigned to two groups: the default group "a
and the group specified in the fix pour command (which can also be "all").

This command must use the region keyword to define an insertion volume. The specified region must have
been previously defined with a region command. It must be of type block or a z—axis cylinder and must be
defined with side = in. The cylinder style of region can only be used with 3d simulations.

Each timestep particles are inserted, they are placed randomly inside the insertion volume so as to mimic a
stream of poured particles. The larger the volume, the more particles that can be inserted at any one timest

fix pour command 257

http://lammps.sandia.gov

Particles are inserted again after enough time has elapsed that the previously inserted particles fall out of th
insertion volume under the influence of gravity. Insertions continue every so many timesteps until the desire
of particles has been inserted.

All other keywords are optional with defaults as shown below. The diam, dens, and vel options enable inser!
particles to have a range of diameters or densities or xy velocities. The specific values for a particular insert
particle will be chosen randomly and uniformly between the specified bounds. The vz or vy value for option
vel assigns a z—-velocity (3d) or y—velocity (2d) to each inserted patrticle.

The vol option specifies what volume fraction of the insertion volume will be filled with particles. The higher
the value, the more patrticles are inserted each timestep. Since inserted particles cannot overlap, the maxim
volume fraction should be no higher than about 0.6. Each timestep particles are inserted, LAMMPS will mak
up to a total of M tries to insert the new particles without overlaps, where M = # of inserted particles *
Nattempt. If LAMMPS is unsuccessful at completing all insertions, it prints a warning.

The rate option moves the insertion volume in the z direction (3d) or y direction (2d). This enables pouring
particles from a successively higher height over time.

Restart, fix_maodify, thermo output, run start/stop, minimize info:

No information about this fix is written to binary restart files. This means you must be careful when restarting
a pouring simulation, when the restart file was written in the middle of the pouring operation. Specifically,
you should use a new fix pour command in the input script for the restarted simulation that continues the
operation. You will need to adjust the arguments of the original fix pour command to do this.

Also note that because the state of the random number generator is not saved in restart files, you cannot dc
"exact" restarts with this fix, where the simulation continues on the same as if no restart had taken place.
However, in a statistical sense, a restarted simulation should produce the same behavior if you adjust the fi
pour parameters appropriately.

None of the fix_maodify options are relevant to this fix. No quantities calculated by this fix can be output by
the thermo_style custom command. No parameter of this fix can be used with the start/stop keywords of the
run command. This fix is not invoked during energy minimization.

Restrictions:

This fix is part of the "granular" package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

For 3d simulations, a gravity fix in the —z direction must be defined for use in conjunction with this fix. For
2d simulations, gravity must be defined in the -y direction.

Related commands:
fix_deposit, fix_gravity, region
Default:

The option defaults are diam = 1.0 1.0, dens = 1.0 1.0, vol = 0.25 50, rate = 0.0, vel = 0.0 0.0 0.0 0.0 0.0.

fix pour command 258

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

fix print command

Syntax:
fix ID group—ID print N string

« ID, group-ID are documented_in fix command

« print = style name of this fix command

« N = print every N steps

« string = text string to print with optional variable names

Examples:

fix extra all print 100 "Coords of marker atom = $x $y $z"
Description:

Print a text string to the screen and logfile every N steps during a simulation run. This can be used for
diagnostic purposes or even as a debugging tool to monitor some quantity during a run. The text string mus
be a single argument, so it should be enclosed in double quotes if it is more than one word. If it contains
variables it must be enclosed in double quotes to insure they are not evaluated when the input script is read
but will instead be evaluated when the string is printed.

See the variable command for a description of equal style variables which are the most useful ones to use v
the fix print command, since they are evaluated afresh each timestep that the fix print line is output.
Equal-style variables can calculate complex formulas involving atom and group properties, mathematical
operations, other variables, etc.

Restart, fix_modify, thermo output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix. No quantities calculated by this fix can be output by the thermo_style custom command. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked

during_energy minimization.

Restrictions:

If equal-style variables are used which contain thermo_style custom keywords for energy such as pe, eng,
evdwl, ebond, etc, then they will only be up—to—date on timesteps where thermodynamics are computed. Fc
example, if you output thermodynamics every 100 steps, but issue a fix print command with N = 2 that
contains such a variable, the printed value will only be current on timesteps that are a multiple of 100. This i
because the potential functions in LAMMPS (pairwise, bond, etc) only compute energies on timesteps when
thermodynamic output is being performed.

Related commands:

variable, print

Default: none

fix print command 259

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

fix rdf command

Syntax:
fix ID group—ID rdf N file Nbin itypel jtypel itype2 jtype2 ...

« ID, group-ID are documented_in fix command

« rdf = style name of this fix command

« N = compute radial distribution function (RDF) every this many timesteps
« file = filename to write radial distribution funtion info to

* Nbin = number of RDF bins

« itypeN = central atom type for RDF pair N

* jtypeN = distribution atom type for RDF pair N

Examples:

fix 1 all rdf 500 rdf.out 1001 1
fix 1 fluid rdf 10000 rdf.out 10011122122

Description:

Compute the radial distribution function (RDF), also known as g(r), and coordination number every N steps.
The RDF for each specified atom type pair is histogrammed in Nbin bins from distance 0 to Rc, where Rc =
the maximum force cutoff for any pair of atom types. An atom pair only contributes to the RDF if

* both atoms are in the fix group
« the distance between them is within the maximum force cutoff
« their interaction is stored in the neighbor list

Bonded atoms (1-2, 1-3, 1-4 interactions within a molecular topology) with a pairwise weighting factor of
0.0 are not included in the RDF; pairs with a non-zero weighting factor are included. The weighting factor is
set by the special_bonds command.

The RDF statistics for each timestep are written to the specified file, as are the RDF values averaged over &
timesteps.

Restart, fix_modify, thermo output, run start/stop, minimize info:
No information about this fix is written to binary restart files. None of the fix_modify options are relevant to

this fix. No quantities calculated by this fix can be output by the thermo_style custom command. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked

during_energy minimization.

Restrictions:
The RDF is not computed for distances longer than the force cutoff, since processors (in parallel) don't knov

atom coordinates for atoms further away than that distance. If you want an RDF for larger r, you'll need to
post—process a dump file.

fix rdf command 260

http://lammps.sandia.gov

Related commands:

pair_style

Default: none

fix rdf command 261

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

fix recenter command

Syntax:
fix ID group—ID recenter x y z keyword value ...

« ID, group-ID are documented_in fix command

« recenter = style name of this fix command

* X,y,Z = constrain center—of-mass to these coords (distance units), any coord can also be NULL or
INIT (see below)

 zero or more keyword/value pairs may be appended to the args

« keyword = shift or units

shift value = group-ID
group—-ID = group of atoms whose coords are shifted
units value = box or lattice or fraction

Examples:

fix 1 all recenter 0.0 0.5 0.0
fix 1 all recenter INIT INIT NULL
fix 1 all recenter INIT 0.0 0.0 units box

Description:

Constrain the center—of—-mass position of a group of atoms by adjusting the coordinates of the atoms every
timestep. This is simply a small shift that does not alter the dynamics of the system or change the relative
coordinates of any pair of atoms in the group. This can be used to insure the entire collection of atoms (or a
portion of them) do not drift during the simulation due to random perturbations (e.qg. fix langevin
thermostatting).

Distance units for the x,y,z values are determined by the setting of the units keyword, as discussed below. C
or more X,y,z values can also be specified as NULL, which means exclude that dimension from this operatic
Or it can be specified as INIT which means to constain the center—of-mass to its initial value at the beginnir
of the run.

The center—of-mass (COM) is computed for the group specified by the fix. If the current COM is different
than the specified x,y,z, then a group of atoms has their coordinates shifted by the difference. By default the
shifted group is also the group specified by the fix. A different group can be shifted by using the shift
keyword. For example, the COM could be computed on a protein to keep it in the center of the simulation
box. But the entire system (protein + water) could be shifted.

If the units keyword is set to box, then the distance units of x,y,z are defined by the units command - e.g.
Angstroms for real units. A lattice value means the distance units are in lattice spacings. The lattice commar
must have been previously used to define the lattice spacing. A fraction value means a fractional distance
between the lo/hi box boundaries, e.g. 0.5 = middle of the box. The default is to use lattice units.

Note that the velocity command can be used to create velocities with zero aggregate linear and/or angular
momentum.

fix recenter command 262

http://lammps.sandia.gov

IMPORTANT NOTE: This fix performs its operations at the same point in the timestep as other time
integration fixes, such as fix nve, fix nvt, or fix npt. Thus fix recenter should normally be the last such fix
specified in the input script, since the adjustments it makes to atom coordinates should come after the chan
made by time integration. LAMMPS will warn you if your fixes are not ordered this way.

Restart, fix_maodify, thermo output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix. No quantities calculated by this fix can be output by the thermo_style custom command. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked

during_energy minimization.

Restrictions:

This fix should not be used with an x,y,z setting that causes a large shift in the system on the 1st timestep, ¢
to the requested COM being very different from the initial COM. This could cause atoms to be lost,especially
in parallel. Instead, use the displace_atoms command, which can be used to move atoms a large distance.

Related commands:

fix momentum, velacity

Default:

The option defaults are adjust = fix group—-ID, and units = lattice.

fix recenter command 263

LAMMPS WWW Site - LAMMPS Documentation— LAMMPS Commands

fix rigid
Syntax:

fix ID group—ID rigid keyword values

« ID, group-ID are documented_in fix command
« rigid = style name of this fix command
« keyword = single or molecule or group

single values = none
molecule values = none
group values = list of group IDs

Examples:

fix 1 clump rigid single
fix 1 polychains rigid molecule
fix 2 fluid rigid group clumpl clump2 clump3

Description:

Treat one or more sets of atoms as an independent rigid body. This means that each timestep the total force
and torque on each rigid body is computed and the coordinates and velocities of the atoms in each body are
updated so that they move as a rigid body. This can be useful for freezing one or more portions of a large
biomolecule, or for simulating a system of colloidal particles.

This fix updates the positions and velocities of the rigid atoms with a constant—energy time integration, so y«
should not update the same atoms via other fixes (e.g. nve, nvt, npt).

Each body must have two or more atoms. Which atoms are in which bodies can be defined via several
options.

For option single the entire group of atoms is treated as one rigid body.
For option molecule, each set of atoms in the group with a different molecule ID is treated as a rigid body.

For option group, each of the listed groups is treated as a separate rigid body. Note that only atoms that are
also in the fix group are included in each rigid body.

For computational efficiency, you should also turn off pairwise and bond interactions within each rigid body,
as they no longer contribute to the motion. The neigh_modify exclude and delete bonds commands are use
to do this.

For computational efficiency, you should define one fix rigid which includes all the desired rigid bodies.
LAMMPS will allow multiple rigid fixes to be defined, but it is more expensive.

The degrees—-of-freedom removed by rigid bodies are accounted for in temperature and pressure
computations. Similary, the rigid body contribution to the pressure virial is also accounted for. The latter is
only correct if forces within the bodies have been turned of